Exemplo n.º 1
0
    def _read_class(self, cls, dim=1, **kwargs):
        # Get the default spin channel
        # First read the geometry
        geom = self.read_geometry()

        # Populate the things
        sp = self.groups['SPARSE']

        # Now create the tight-binding stuff (we re-create the
        # array, hence just allocate the smallest amount possible)
        C = cls(geom, dim, nnzpr=1)

        C._csr.ncol = np.array(sp.variables['n_col'][:], np.int32)
        # Update maximum number of connections (in case future stuff happens)
        C._csr.ptr = _ncol_to_indptr(C._csr.ncol)
        C._csr.col = np.array(sp.variables['list_col'][:], np.int32) - 1

        # Copy information over
        C._csr._nnz = len(C._csr.col)
        C._csr._D = np.empty([C._csr.ptr[-1], dim], np.float64)

        # Convert from isc to sisl isc
        _csr_from_sc_off(C.geometry, sp.variables['isc_off'][:, :], C._csr)

        return C
Exemplo n.º 2
0
    def _read_class_spin(self, cls, **kwargs):
        # Get the default spin channel
        spin = len(self._dimension('spin'))

        # First read the geometry
        geom = self.read_geometry()

        # Populate the things
        sp = self.groups['SPARSE']

        # Since we may read in an orthogonal basis (stored in a Siesta compliant file)
        # we can check whether it is orthogonal by checking the sum of the absolute S
        # I.e. whether only diagonal elements are present.
        S = np.array(sp.variables['S'][:], np.float64)
        orthogonal = np.abs(S).sum() == geom.no

        # Now create the tight-binding stuff (we re-create the
        # array, hence just allocate the smallest amount possible)
        C = cls(geom, spin, nnzpr=1, orthogonal=orthogonal)

        C._csr.ncol = np.array(sp.variables['n_col'][:], np.int32)
        # Update maximum number of connections (in case future stuff happens)
        C._csr.ptr = _ncol_to_indptr(C._csr.ncol)
        C._csr.col = np.array(sp.variables['list_col'][:], np.int32) - 1

        # Copy information over
        C._csr._nnz = len(C._csr.col)
        if orthogonal:
            C._csr._D = np.empty([C._csr.ptr[-1], spin], np.float64)
        else:
            C._csr._D = np.empty([C._csr.ptr[-1], spin + 1], np.float64)
            C._csr._D[:, C.S_idx] = S

        # Convert from isc to sisl isc
        _csr_from_sc_off(C.geometry, sp.variables['isc_off'][:, :], C._csr)

        return C
Exemplo n.º 3
0
    def density(self, grid, spinor=None, tol=1e-7, eta=None):
        r""" Expand the density matrix to the charge density on a grid

        This routine calculates the real-space density components on a specified grid.

        This is an *in-place* operation that *adds* to the current values in the grid.

        Note: To calculate :math:`\rho(\mathbf r)` in a unit-cell different from the
        originating geometry, simply pass a grid with a unit-cell different than the originating
        supercell.

        The real-space density is calculated as:

        .. math::
            \rho(\mathbf r) = \sum_{\nu\mu}\phi_\nu(\mathbf r)\phi_\mu(\mathbf r) D_{\nu\mu}

        While for non-collinear/spin-orbit calculations the density is determined from the
        spinor component (`spinor`) by

        .. math::
           \rho_{\boldsymbol\sigma}(\mathbf r) = \sum_{\nu\mu}\phi_\nu(\mathbf r)\phi_\mu(\mathbf r) \sum_\alpha [\boldsymbol\sigma \mathbf \rho_{\nu\mu}]_{\alpha\alpha}

        Here :math:`\boldsymbol\sigma` corresponds to a spinor operator to extract relevant quantities. By passing the identity matrix the total charge is added. By using the Pauli matrix :math:`\boldsymbol\sigma_x`
        only the :math:`x` component of the density is added to the grid (see `Spin.X`).

        Parameters
        ----------
        grid : Grid
           the grid on which to add the density (the density is in ``e/Ang^3``)
        spinor : (2,) or (2, 2), optional
           the spinor matrix to obtain the diagonal components of the density. For un-polarized density matrices
           this keyword has no influence. For spin-polarized it *has* to be either 1 integer or a vector of
           length 2 (defaults to total density).
           For non-collinear/spin-orbit density matrices it has to be a 2x2 matrix (defaults to total density).
        tol : float, optional
           DM tolerance for accepted values. For all density matrix elements with absolute values below
           the tolerance, they will be treated as strictly zeros.
        eta : bool, optional
           show a progressbar on stdout
        """
        try:
            # Once unique has the axis keyword, we know we can safely
            # use it in this routine
            # Otherwise we raise an ImportError
            unique([[0, 1], [2, 3]], axis=0)
        except Exception:
            raise NotImplementedError(
                f"{self.__class__.__name__}.density requires numpy >= 1.13, either update "
                "numpy or do not use this function!")

        geometry = self.geometry
        # Check that the atomic coordinates, really are all within the intrinsic supercell.
        # If not, it may mean that the DM does not conform to the primary unit-cell paradigm
        # of matrix elements. It complicates things.
        fxyz = geometry.fxyz
        f_min = fxyz.min()
        f_max = fxyz.max()
        del fxyz, f_min, f_max

        # Extract sub variables used throughout the loop
        shape = _a.asarrayi(grid.shape)
        dcell = grid.dcell

        # Sparse matrix data
        csr = self._csr

        # In the following we don't care about division
        # So 1) save error state, 2) turn off divide by 0, 3) calculate, 4) turn on old error state
        old_err = np.seterr(divide='ignore', invalid='ignore')

        # Placeholder for the resulting coefficients
        DM = None
        if self.spin.kind > Spin.POLARIZED:
            if spinor is None:
                # Default to the total density
                spinor = np.identity(2, dtype=np.complex128)
            else:
                spinor = _a.arrayz(spinor)
            if spinor.size != 4 or spinor.ndim != 2:
                raise ValueError(
                    f"{self.__class__.__name__}.density with NC/SO spin, requires a 2x2 matrix."
                )

            DM = _a.emptyz([self.nnz, 2, 2])
            idx = _a.array_arange(csr.ptr[:-1], n=csr.ncol)
            if self.spin.kind == Spin.NONCOLINEAR:
                # non-collinear
                DM[:, 0, 0] = csr._D[idx, 0]
                DM[:, 0, 1] = csr._D[idx, 2] + 1j * csr._D[idx, 3]
                DM[:, 1, 0] = np.conj(DM[:, 0, 1])
                DM[:, 1, 1] = csr._D[idx, 1]
            else:
                # spin-orbit
                DM[:, 0, 0] = csr._D[idx, 0] + 1j * csr._D[idx, 4]
                DM[:, 0, 1] = csr._D[idx, 2] + 1j * csr._D[idx, 3]
                DM[:, 1, 0] = csr._D[idx, 6] + 1j * csr._D[idx, 7]
                DM[:, 1, 1] = csr._D[idx, 1] + 1j * csr._D[idx, 5]

            # Perform dot-product with spinor, and take out the diagonal real part
            DM = dot(DM, spinor.T)[:, [0, 1], [0, 1]].sum(1).real

        elif self.spin.kind == Spin.POLARIZED:
            if spinor is None:
                spinor = _a.onesd(2)

            elif isinstance(spinor, Integral):
                # extract the provided spin-polarization
                s = _a.zerosd(2)
                s[spinor] = 1.
                spinor = s
            else:
                spinor = _a.arrayd(spinor)

            if spinor.size != 2 or spinor.ndim != 1:
                raise ValueError(
                    f"{self.__class__.__name__}.density with polarized spin, requires spinor "
                    "argument as an integer, or a vector of length 2")

            idx = _a.array_arange(csr.ptr[:-1], n=csr.ncol)
            DM = csr._D[idx, 0] * spinor[0] + csr._D[idx, 1] * spinor[1]

        else:
            idx = _a.array_arange(csr.ptr[:-1], n=csr.ncol)
            DM = csr._D[idx, 0]

        # Create the DM csr matrix.
        csrDM = csr_matrix((DM, csr.col[idx], _ncol_to_indptr(csr.ncol)),
                           shape=(self.shape[:2]),
                           dtype=DM.dtype)

        # Clean-up
        del idx, DM

        # To heavily speed up the construction of the density we can recreate
        # the sparse csrDM matrix by summing the lower and upper triangular part.
        # This means we only traverse the sparse UPPER part of the DM matrix
        # I.e.:
        #    psi_i * DM_{ij} * psi_j + psi_j * DM_{ji} * psi_i
        # is equal to:
        #    psi_i * (DM_{ij} + DM_{ji}) * psi_j
        # Secondly, to ease the loops we extract the main diagonal (on-site terms)
        # and store this for separate usage
        csr_sum = [None] * geometry.n_s
        no = geometry.no
        primary_i_s = geometry.sc_index([0, 0, 0])
        for i_s in range(geometry.n_s):
            # Extract the csr matrix
            o_start, o_end = i_s * no, (i_s + 1) * no
            csr = csrDM[:, o_start:o_end]
            if i_s == primary_i_s:
                csr_sum[i_s] = triu(csr) + tril(csr, -1).transpose()
            else:
                csr_sum[i_s] = csr

        # Recreate the column-stacked csr matrix
        csrDM = ss_hstack(csr_sum, format='csr')
        del csr, csr_sum

        # Remove all zero elements (note we use the tolerance here!)
        csrDM.data = np.where(np.fabs(csrDM.data) > tol, csrDM.data, 0.)

        # Eliminate zeros and sort indices etc.
        csrDM.eliminate_zeros()
        csrDM.sort_indices()
        csrDM.prune()

        # 1. Ensure the grid has a geometry associated with it
        sc = grid.sc.copy()
        # Find the periodic directions
        pbc = [
            bc == grid.PERIODIC or geometry.nsc[i] > 1
            for i, bc in enumerate(grid.bc[:, 0])
        ]
        if grid.geometry is None:
            # Create the actual geometry that encompass the grid
            ia, xyz, _ = geometry.within_inf(sc, periodic=pbc)
            if len(ia) > 0:
                grid.set_geometry(Geometry(xyz, geometry.atoms[ia], sc=sc))

        # Instead of looping all atoms in the supercell we find the exact atoms
        # and their supercell indices.
        add_R = _a.fulld(3, geometry.maxR())
        # Calculate the required additional vectors required to increase the fictitious
        # supercell by add_R in each direction.
        # For extremely skewed lattices this will be way too much, hence we make
        # them square.
        o = sc.toCuboid(True)
        sc = SuperCell(o._v + np.diag(2 * add_R), origin=o.origin - add_R)

        # Retrieve all atoms within the grid supercell
        # (and the neighbours that connect into the cell)
        IA, XYZ, ISC = geometry.within_inf(sc, periodic=pbc)
        XYZ -= grid.sc.origin.reshape(1, 3)

        # Retrieve progressbar
        eta = progressbar(len(IA), f"{self.__class__.__name__}.density",
                          "atom", eta)

        cell = geometry.cell
        atoms = geometry.atoms
        axyz = geometry.axyz
        a2o = geometry.a2o

        def xyz2spherical(xyz, offset):
            """ Calculate the spherical coordinates from indices """
            rx = xyz[:, 0] - offset[0]
            ry = xyz[:, 1] - offset[1]
            rz = xyz[:, 2] - offset[2]

            # Calculate radius ** 2
            xyz_to_spherical_cos_phi(rx, ry, rz)
            return rx, ry, rz

        def xyz2sphericalR(xyz, offset, R):
            """ Calculate the spherical coordinates from indices """
            rx = xyz[:, 0] - offset[0]
            idx = indices_fabs_le(rx, R)
            ry = xyz[idx, 1] - offset[1]
            ix = indices_fabs_le(ry, R)
            ry = ry[ix]
            idx = idx[ix]
            rz = xyz[idx, 2] - offset[2]
            ix = indices_fabs_le(rz, R)
            ry = ry[ix]
            rz = rz[ix]
            idx = idx[ix]
            if len(idx) == 0:
                return [], [], [], []
            rx = rx[idx]

            # Calculate radius ** 2
            ix = indices_le(rx**2 + ry**2 + rz**2, R**2)
            idx = idx[ix]
            if len(idx) == 0:
                return [], [], [], []
            rx = rx[ix]
            ry = ry[ix]
            rz = rz[ix]
            xyz_to_spherical_cos_phi(rx, ry, rz)
            return idx, rx, ry, rz

        # Looping atoms in the sparse pattern is better since we can pre-calculate
        # the radial parts and then add them.
        # First create a SparseOrbital matrix, then convert to SparseAtom
        spO = SparseOrbital(geometry, dtype=np.int16)
        spO._csr = SparseCSR(csrDM)
        spA = spO.toSparseAtom(dtype=np.int16)
        del spO
        na = geometry.na
        # Remove the diagonal part of the sparse atom matrix
        off = na * primary_i_s
        for ia in range(na):
            del spA[ia, off + ia]

        # Get pointers and delete the atomic sparse pattern
        # The below complexity is because we are not finalizing spA
        csr = spA._csr
        a_ptr = _ncol_to_indptr(csr.ncol)
        a_col = csr.col[_a.array_arange(csr.ptr, n=csr.ncol)]
        del spA, csr

        # Get offset in supercell in orbitals
        off = geometry.no * primary_i_s
        origin = grid.origin
        # TODO sum the non-origin atoms to the csrDM matrix
        #      this would further decrease the loops required.

        # Loop over all atoms in the grid-cell
        for ia, ia_xyz, isc in zip(IA, XYZ, ISC):
            # Get current atom
            ia_atom = atoms[ia]
            IO = a2o(ia)
            IO_range = range(ia_atom.no)
            cell_offset = (cell * isc.reshape(3, 1)).sum(0) - origin

            # Extract maximum R
            R = ia_atom.maxR()
            if R <= 0.:
                warn(
                    f"Atom '{ia_atom}' does not have a wave-function, skipping atom."
                )
                eta.update()
                continue

            # Retrieve indices of the grid for the atomic shape
            idx = grid.index(ia_atom.toSphere(ia_xyz))

            # Now we have the indices for the largest orbital on the atom

            # Subsequently we have to loop the orbitals and the
            # connecting orbitals
            # Then we find the indices that overlap with these indices
            # First reduce indices to inside the grid-cell
            idx[idx[:, 0] < 0, 0] = 0
            idx[shape[0] <= idx[:, 0], 0] = shape[0] - 1
            idx[idx[:, 1] < 0, 1] = 0
            idx[shape[1] <= idx[:, 1], 1] = shape[1] - 1
            idx[idx[:, 2] < 0, 2] = 0
            idx[shape[2] <= idx[:, 2], 2] = shape[2] - 1

            # Remove duplicates, requires numpy >= 1.13
            idx = unique(idx, axis=0)
            if len(idx) == 0:
                eta.update()
                continue

            # Get real-space coordinates for the current atom
            # as well as the radial parts
            grid_xyz = dot(idx, dcell)

            # Perform loop on connection atoms
            # Allocate the DM_pj arrays
            # This will have a size equal to number of elements times number of
            # orbitals on this atom
            # In this way we do not have to calculate the psi_j multiple times
            DM_io = csrDM[IO:IO + ia_atom.no, :].tolil()
            DM_pj = _a.zerosd([ia_atom.no, grid_xyz.shape[0]])

            # Now we perform the loop on the connections for this atom
            # Remark that we have removed the diagonal atom (it-self)
            # As that will be calculated in the end
            for ja in a_col[a_ptr[ia]:a_ptr[ia + 1]]:
                # Retrieve atom (which contains the orbitals)
                ja_atom = atoms[ja % na]
                JO = a2o(ja)
                jR = ja_atom.maxR()
                # Get actual coordinate of the atom
                ja_xyz = axyz(ja) + cell_offset

                # Reduce the ia'th grid points to those that connects to the ja'th atom
                ja_idx, ja_r, ja_theta, ja_cos_phi = xyz2sphericalR(
                    grid_xyz, ja_xyz, jR)

                if len(ja_idx) == 0:
                    # Quick step
                    continue

                # Loop on orbitals on this atom
                for jo in range(ja_atom.no):
                    o = ja_atom.orbitals[jo]
                    oR = o.R

                    # Downsize to the correct indices
                    if jR - oR < 1e-6:
                        ja_idx1 = ja_idx
                        ja_r1 = ja_r
                        ja_theta1 = ja_theta
                        ja_cos_phi1 = ja_cos_phi
                    else:
                        ja_idx1 = indices_le(ja_r, oR)
                        if len(ja_idx1) == 0:
                            # Quick step
                            continue

                        # Reduce arrays
                        ja_r1 = ja_r[ja_idx1]
                        ja_theta1 = ja_theta[ja_idx1]
                        ja_cos_phi1 = ja_cos_phi[ja_idx1]
                        ja_idx1 = ja_idx[ja_idx1]

                    # Calculate the psi_j component
                    psi = o.psi_spher(ja_r1,
                                      ja_theta1,
                                      ja_cos_phi1,
                                      cos_phi=True)

                    # Now add this orbital to all components
                    for io in IO_range:
                        DM_pj[io, ja_idx1] += DM_io[io, JO + jo] * psi

                # Temporary clean up
                del ja_idx, ja_r, ja_theta, ja_cos_phi
                del ja_idx1, ja_r1, ja_theta1, ja_cos_phi1, psi

            # Now we have all components for all orbitals connection to all orbitals on atom
            # ia. We simply need to add the diagonal components

            # Loop on the orbitals on this atom
            ia_r, ia_theta, ia_cos_phi = xyz2spherical(grid_xyz, ia_xyz)
            del grid_xyz
            for io in IO_range:
                # Only loop halve the range.
                # This is because: triu + tril(-1).transpose()
                # removes the lower half of the on-site matrix.
                for jo in range(io + 1, ia_atom.no):
                    DM = DM_io[io, off + IO + jo]

                    oj = ia_atom.orbitals[jo]
                    ojR = oj.R

                    # Downsize to the correct indices
                    if R - ojR < 1e-6:
                        ja_idx1 = slice(None)
                        ja_r1 = ia_r
                        ja_theta1 = ia_theta
                        ja_cos_phi1 = ia_cos_phi
                    else:
                        ja_idx1 = indices_le(ia_r, ojR)
                        if len(ja_idx1) == 0:
                            # Quick step
                            continue

                        # Reduce arrays
                        ja_r1 = ia_r[ja_idx1]
                        ja_theta1 = ia_theta[ja_idx1]
                        ja_cos_phi1 = ia_cos_phi[ja_idx1]

                    # Calculate the psi_j component
                    DM_pj[io, ja_idx1] += DM * oj.psi_spher(
                        ja_r1, ja_theta1, ja_cos_phi1, cos_phi=True)

                # Calculate the psi_i component
                # Note that this one *also* zeroes points outside the shell
                # I.e. this step is important because it "nullifies" all but points where
                # orbital io is defined.
                psi = ia_atom.orbitals[io].psi_spher(ia_r,
                                                     ia_theta,
                                                     ia_cos_phi,
                                                     cos_phi=True)
                DM_pj[io, :] += DM_io[io, off + IO + io] * psi
                DM_pj[io, :] *= psi

            # Temporary clean up
            ja_idx1 = ja_r1 = ja_theta1 = ja_cos_phi1 = None
            del ia_r, ia_theta, ia_cos_phi, psi, DM_io

            # Now add the density
            grid.grid[idx[:, 0], idx[:, 1], idx[:, 2]] += DM_pj.sum(0)

            # Clean-up
            del DM_pj, idx

            eta.update()
        eta.close()

        # Reset the error code for division
        np.seterr(**old_err)
Exemplo n.º 4
0
Arquivo: delta.py Projeto: juijan/sisl
    def _read_class(self, cls, **kwargs):
        """ Reads a class model from a file """

        # Ensure that the geometry is written
        geom = self.read_geometry()

        # Determine the type of delta we are storing...
        E = kwargs.get('E', None)

        ilvl, ik, iE = self._get_lvl_k_E(**kwargs)

        # Get the level
        lvl = self._get_lvl(ilvl)

        if iE < 0 and ilvl in [3, 4]:
            raise ValueError(f"Energy {E} eV does not exist in the file.")
        if ik < 0 and ilvl in [2, 4]:
            raise ValueError("k-point requested does not exist in the file.")

        if ilvl == 1:
            sl = [slice(None)] * 2
        elif ilvl == 2:
            sl = [slice(None)] * 3
            sl[0] = ik
        elif ilvl == 3:
            sl = [slice(None)] * 3
            sl[0] = iE
        elif ilvl == 4:
            sl = [slice(None)] * 4
            sl[0] = ik
            sl[1] = iE

        # Now figure out what data-type the delta is.
        if 'Redelta' in lvl.variables:
            # It *must* be a complex valued Hamiltonian
            is_complex = True
            dtype = np.complex128
        elif 'delta' in lvl.variables:
            is_complex = False
            dtype = np.float64

        # Get number of spins
        nspin = len(self.dimensions['spin'])

        # Now create the sparse matrix stuff (we re-create the
        # array, hence just allocate the smallest amount possible)
        C = cls(geom, nspin, nnzpr=1, dtype=dtype, orthogonal=True)

        C._csr.ncol = _a.arrayi(lvl.variables['n_col'][:])
        # Update maximum number of connections (in case future stuff happens)
        C._csr.ptr = _ncol_to_indptr(C._csr.ncol)
        C._csr.col = _a.arrayi(lvl.variables['list_col'][:]) - 1

        # Copy information over
        C._csr._nnz = len(C._csr.col)
        C._csr._D = np.empty([C._csr.ptr[-1], nspin], dtype)
        if is_complex:
            for ispin in range(nspin):
                sl[-2] = ispin
                C._csr._D[:, ispin].real = lvl.variables['Redelta'][sl] * Ry2eV
                C._csr._D[:, ispin].imag = lvl.variables['Imdelta'][sl] * Ry2eV
        else:
            for ispin in range(nspin):
                sl[-2] = ispin
                C._csr._D[:, ispin] = lvl.variables['delta'][sl] * Ry2eV

        # Convert from isc to sisl isc
        _csr_from_sc_off(C.geometry, lvl.variables['isc_off'][:, :], C._csr)
        _mat_spin_convert(C)

        return C