def main(): if csv: uttrs, resps = get_uttr_resp_csv(files) else: if data_type == "single": uttrs, resps = get_uttr_resps_oneline_single(files) else: uttrs, resps = get_uttr_resp_oneline_pair(files) logger.info("处理uttrance") for i, uttr in enumerate(uttrs): result = "" for ch in uttr: if is_chinese_punc(ch) or is_chinese_char(ch): result += f" {ch} " else: result += ch result = result.strip().replace(" ", " ") uttrs[i] = result dialogues = [] for i, (uttr, resp) in tqdm(enumerate(zip(uttrs, resps))): d = copy.deepcopy(template) d["id"] = i d["utterance"] = uttr d["responses"][0]["reply"] = resp dialogues.append(d) with open(Path(basename) / to_file, 'w', encoding="utf8") as f: json.dump(dialogues, f, ensure_ascii=False, indent=4)
def evaluate(self, dataloader: DataLoader): result = dict() y_pred = self.predict(dataloader) y_true = dataloader.label if isinstance(self._task, tasks.Classification): y_pred_label = np.argmax(y_pred[:10], axis=-1) # 记录前10个真实标签和预测标签 logger.info( f"The former 10 true label is {y_true[:10]} | pred label is {y_pred_label}" ) elif isinstance(self._task, tasks.Ranking): y_true = y_true.reshape(len(y_true), 1) loss = sum([ c(torch.tensor(y_pred), torch.tensor(y_true)) for c in self._criterions ]) self._writer.add_scalar("Loss/eval", loss.item(), self._iteration) try: id_left = dataloader.id_left except: pass if isinstance(self._task, tasks.Ranking): for metric in self._task.metrics: result[metric] = self._eval_metric_on_data_frame( metric, id_left, y_true, y_pred.squeeze(axis=-1)) else: for metric in self._task.metrics: result[metric] = metric(y_true, y_pred) return result, loss
def save(self): """ Save the trainer. `Trainer` parameters like epoch, best_so_far, model, optimizer and early_stopping will be savad to specific file path. :param path: Path to save trainer. """ checkpoint = self._save_dir.joinpath('trainer.pt') logger.info(f" ** save trainer model to {checkpoint} ** ") if self._data_parallel: model = self._model.module.state_dict() else: model = self._model.state_dict() state = { 'epoch': self._epoch, 'model': model, 'optimizer': self._optimizer.state_dict(), 'early_stopping': self._early_stopping.state_dict(), } if self._epoch_scheduler: state['epoch_scheduler'] = self._epoch_scheduler.state_dict() if self._step_scheduler: state['step_scheduler'] = self._step_scheduler.state_dict() torch.save(state, checkpoint)
def save_json(basename, json_files, tokenizer, model, device): for file in json_files: logger.info(f"正在处理文件 {file} ...") with open(Path(basename) / file, 'r', encoding="utf8") as f: records = json.load(f) for i, record in tqdm(enumerate(records)): uttr = record['utterance'] uttr_list = re.split(r"\[U=\d+\]", uttr) uttr = uttr_list[-1] uttr = replace_kv(uttr).replace(" ", "") responses = record['responses'] for j, reply in enumerate(responses): ans = reply['reply'] ans = replace_kv(ans) pred = albert_predict(text_a=[uttr], text_b=[ans], tokenizer=tokenizer, model=model, device=device) lan_style = labels[pred[0]] ## 保存语言风格 reply['language_style'] = lan_style responses[j] = reply records[i]['responses'] = responses save_file = to_file_prefix + "_" + file logger.info(f"处理完成并保存在 {save_file}") with open(save_file, 'w', encoding='utf8') as to_f: json.dump(records, to_f, ensure_ascii=False, indent=4)
def _load_model(self, model: BaseModel, device: typing.Union[torch.device, int, list, None] = None): if not isinstance(model, BaseModel): raise ValueError(f"model should be a `BaseModel` instance. " f"But got {type(model)}") logger.info(" ** load model and device ** ") self._task = model.params['task'] self._data_parallel = False self._model = model # 如果指定了多个GPU,则默认是数据并行 if isinstance(device, list) and len(device): logger.info(" ** data parallel ** ") self._data_parallel = True self._model = torch.nn.DataParallel(self._model, device_ids=device) self._device = device[0] else: if not (isinstance(device, torch.device) or isinstance(device, int)): device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self._device = device self._model.to(self._device)
def get_dataloader(train_data, valid_data): train_dataset = PairDataset(train_data, num_neg=0) valid_dataset = PairDataset(valid_data, num_neg=0) padding = MultiQAPadding(fixed_length_uttr=fixed_length_uttr, fixed_length_resp=fixed_length_resp, fixed_length_turn=fixed_length_turn, data_type=data_type) train_dataloader = DictDataLoader(train_dataset, batch_size=batch_size, turns=fixed_length_turn, stage='train', shuffle=True, sort=False, callback=padding) valid_dataloader = DictDataLoader(valid_dataset, batch_size=batch_size, turns=fixed_length_turn, stage='dev', shuffle=False, sort=False, callback=padding) for i, (x, y) in enumerate(train_dataloader): # 打印Utterance的形状 logger.info(f"The shape of utternace is {x[constants.UTTRS].shape}") if i == 0: break return train_dataloader, valid_dataloader
def save_model(self): """Save the model.""" checkpoint = self._save_dir.joinpath('model.pt') logger.info(f" ** save raw model to {checkpoint} ** ") if self._data_parallel: torch.save(self._model.module.state_dict(), checkpoint) else: torch.save(self._model.state_dict(), checkpoint)
def get_uttr_resp_oneline_pair(files): uttrs, resps = [], [] for file in files: logger.info(f"正在处理文件 {file}") with open(Path(basename) / file, 'r', encoding="utf8") as f: for line in tqdm(f): line = line.strip() if line: line_list = line.split("\t") uttrs.append(line_list[0].strip().replace(" ", "")) resps.append(line_list[-1].strip().replace(" ", "")) return uttrs, resps
def restore_model(self, checkpoint: typing.Union[str, Path]): """ Restore model. :param checkpoint: A checkpoint from which to continue training. """ logger.info(" ** restore raw model ** ") state = torch.load(checkpoint, map_location=self._device) if self._data_parallel: self._model.module.load_state_dict(state) else: self._model.load_state_dict(state)
def _load_path(self, checkpoint: typing.Union[str, Path], save_dir: typing.Union[str, Path]): logger.info(" ** restore exist model checkpoint ** ") if not save_dir: save_dir = Path('.').joinpath('save') if not Path(save_dir).exists(): Path(save_dir).mkdir(parents=True) self._save_dir = Path(save_dir) if checkpoint: if self._save_all: self.restore(checkpoint) else: self.restore_model(checkpoint)
def __init__(self, model: BaseModel, optimizer: Optimizer, trainloader: DataLoader, validloader: DataLoader, device: typing.Union[torch.device, int, list, None] = None, writer: SummaryWriter = None, start_epoch: int = 1, epochs: int = 10, validate_interval: typing.Optional[int] = None, epoch_scheduler: typing.Any = None, step_scheduler: typing.Any = None, clip_norm: typing.Union[float, int] = None, l1_reg: float = 0.0, l2_reg: float = 0.0, patience: typing.Optional[int] = None, key: typing.Any = None, checkpoint: typing.Union[str, Path] = None, save_dir: typing.Union[str, Path] = None, save_all: bool = False, verbose: int = 1, **kwargs): log_dir = Path(save_dir).joinpath("runs") self._writer = writer or SummaryWriter(log_dir=log_dir) logger.info(f" ** save tensorboard to {self._writer.get_logdir()} ** ") self._load_model(model, device) self._load_dataloader(trainloader, validloader, validate_interval) self._optimizer = optimizer self._epoch_scheduler = epoch_scheduler # 由于这里的scheduler是在每个epoch之后调用一次,所以在定义的时候注意设置更新的step数和epoch一致 self._step_scheduler = step_scheduler # 这个是针对step的scheduler self._clip_norm = clip_norm # 梯度裁剪 # 正则化系数 self._l1_reg = l1_reg self._l2_reg = l2_reg self._criterions = self._task.losses if not key: key = self._task.metrics[0] self._early_stopping = EarlyStopping(patience=patience, key=key) self._start_epoch = start_epoch self._epochs = epochs self._iteration = 0 self._verbose = verbose self._save_all = save_all self._load_path(checkpoint, save_dir)
def restore(self, checkpoint: typing.Union[str, Path] = None): """ Restore trainer. :param checkpoint: A checkpoint from which to continue training. """ logger.info(" ** restore trainer model ** ") state = torch.load(checkpoint, map_location=self._device) if self._data_parallel: self._model.module.load_state_dict(state['model']) else: self._model.load_state_dict(state['model']) self._optimizer.load_state_dict(state['optimizer']) self._start_epoch = state['epoch'] + 1 self._early_stopping.load_state_dict(state['early_stopping']) if self._epoch_scheduler: self._epoch_scheduler.load_state_dict(state['epoch_scheduler']) if self._step_scheduler: self._step_scheduler.load_state_dict(state['step_scheduler'])
def get_uttr_resps_oneline_single(files): uttrs = [] resps = [] flag = 0 for file in files: logger.info(f"正在处理文件 {file}") with open(Path(basename) / file, 'r', encoding="utf8") as f: for i, line in tqdm(enumerate(f)): line = line.strip() j = i if not line or flag: if not line: flag += 1 j = j - flag if line: if j & 1 == 0: uttrs.append(line) else: resps.append(line) return uttrs, resps
def preprocess_train_and_val(train_file, valid_file): logger.info("读取数据") train_data = pd.read_csv(train_file) valid_data = pd.read_csv(valid_file) train_data.dropna(axis=0, subset=[constants.UTTRS, constants.RESP], inplace=True) valid_data.dropna(axis=0, subset=[constants.UTTRS, constants.RESP], inplace=True) preprocessor = CNAlbertPreprocessorForMultiQA(Path(albert_path) / vocab_file, uttr_len=fixed_length_uttr, resp_len=fixed_length_resp, add_special_tokens=add_specical_tokens) logger.info(f"训练集数据量为:{train_data.shape[0]} | 验证集数据量为:{valid_data.shape[0]}") logger.info("使用Preprocessor处理数据") train_data = preprocessor.transform(train_data, uttr_col=constants.UTTRS, resp_col=constants.RESP) valid_data = preprocessor.transform(valid_data, uttr_col=constants.UTTRS, resp_col=constants.RESP) use_cols = ['D_num', 'turns', 'utterances', 'response', 'utterances_len', 'response_len', 'label'] train_data = train_data[use_cols] valid_data = valid_data[use_cols] label_type = int train_data[constants.LABEL] = train_data[constants.LABEL].astype(label_type) valid_data[constants.LABEL] = valid_data[constants.LABEL].astype(label_type) return train_data, valid_data
def load_and_cache_examples(args, task, tokenizer, data_type='train'): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier( ) # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, 'cached_crf-{}_{}_{}_{}'.format( data_type, list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.train_max_seq_length if data_type == 'train' else args.eval_max_seq_length), str(task))) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if data_type == 'train': examples = processor.get_train_examples(args.data_dir) elif data_type == 'dev': examples = processor.get_dev_examples(args.data_dir) else: examples = processor.get_test_examples(args.data_dir) features = convert_examples_to_features(examples=examples, tokenizer=tokenizer, label_list=label_list, max_seq_length=args.train_max_seq_length if data_type=='train' \ else args.eval_max_seq_length, cls_token_at_end=bool(args.model_type in ["xlnet"]), pad_on_left=bool(args.model_type in ['xlnet']), cls_token = tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier( ) # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) all_lens = torch.tensor([f.input_len for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_lens, all_label_ids) return dataset
def predict(args, model, tokenizer, prefix=""): pred_output_dir = args.output_dir if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]: os.makedirs(pred_output_dir) test_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='test') print(len(test_dataset)) # Note that DistributedSampler samples randomly test_sampler = SequentialSampler( test_dataset) if args.local_rank == -1 else DistributedSampler( test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=1, collate_fn=collate_fn) # Eval! logger.info("***** Running prediction %s *****", prefix) logger.info(" Num examples = %d", len(test_dataset)) logger.info(" Batch size = %d", 1) results = [] output_submit_file = os.path.join(pred_output_dir, prefix, "test_prediction.json") pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting") for step, batch in enumerate(test_dataloader): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "start_positions": None, "end_positions": None } if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None) outputs = model(**inputs) start_logits, end_logits = outputs[:2] R = bert_extract_item(start_logits, end_logits) if R: label_entities = [[args.id2label[x[0]], x[1], x[2]] for x in R] else: label_entities = [] json_d = {} json_d['id'] = step json_d['entities'] = label_entities results.append(json_d) pbar(step) print(" ") with open(output_submit_file, "w") as writer: for record in results: writer.write(json.dumps(record) + '\n')
def predict(args, model, tokenizer, prefix=""): pred_output_dir = args.output_dir if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]: os.makedirs(pred_output_dir) test_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='test') # Note that DistributedSampler samples randomly test_sampler = SequentialSampler( test_dataset) if args.local_rank == -1 else DistributedSampler( test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=1, collate_fn=collate_fn) # Eval! logger.info("***** Running prediction %s *****", prefix) logger.info(" Num examples = %d", len(test_dataset)) logger.info(" Batch size = %d", 1) results = [] output_submit_file = os.path.join(pred_output_dir, prefix, "test_prediction.json") pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting") if isinstance(model, nn.DataParallel): model = model.module for step, batch in enumerate(test_dataloader): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": None, 'input_lens': batch[4] } if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None) outputs = model(**inputs) logits = outputs[0] preds, _ = model.crf._obtain_labels(logits, args.id2label, inputs['input_lens']) preds = preds[0][1:-1] # [CLS]XXXX[SEP] label_entities = get_entities(preds, args.id2label, args.markup) json_d = {} json_d['id'] = step json_d['tag_seq'] = " ".join(preds) json_d['entities'] = label_entities results.append(json_d) pbar(step) print(" ") with open(output_submit_file, "w") as writer: for record in results: writer.write(json.dumps(record) + '\n')
def process_and_save_txt(model, tokenizer, device): logger.info("准备数据") if files[0].endswith("json"): text_lefts, text_rights = get_data_json(basename, files) else: text_lefts, text_rights = get_data_txt(basename, files) logger.info("数据预处理完成") logger.info("开始预测...") preds = albert_predict(text_lefts, text_b=text_rights, tokenizer=tokenizer, model=model, device=device) #print(Counter(preds)) logger.info("保存文件") with open(f"{to_file_prefix}_result.txt", 'w', encoding="utf8") as f: for q, a, l in zip(*(text_lefts, text_rights, preds)): f.write(labels[l] + "\t") f.write(q + "\t" + a) f.write("\n")
def load_and_cache_examples(args, task, tokenizer, data_type='train'): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier( ) # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() output_mode = "ranking" # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, 'cached_{}_{}_{}_{}'.format( data_type, list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task))) if os.path.exists(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ['mnli', 'mnli-mm'] and 'roberta' in args.model_type: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] if data_type == 'train': logger.info("Get train examples ...") examples = processor.get_train_examples(args.data_dir) elif data_type == 'dev': logger.info("Get dev examples ...") examples = processor.get_dev_examples(args.data_dir) else: examples = processor.get_test_examples(args.data_dir) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_seq_length=args.max_seq_length, output_mode=output_mode) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier( ) # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) all_lens = torch.tensor([f.input_len for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) else: all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_lens, all_labels) return dataset
def evaluate(args, model, tokenizer, prefix=""): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else ( args.task_name, ) eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else ( args.output_dir, ) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, data_type='dev') if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max( 1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler( eval_dataset) if args.local_rank == -1 else DistributedSampler( eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating") for step, batch in enumerate(eval_dataloader): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { 'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3] } inputs['token_type_ids'] = batch[2] outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs['labels'].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append( out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0) pbar(step) print(' ') if 'cuda' in str(args.device): torch.cuda.empty_cache() eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) elif args.output_mode == "ranking": preds = np.greater(preds, 0.5).astype(np.float) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) return results
def train(args, train_dataset, model, tokenizer): """ Train the model """ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler( train_dataset) if args.local_rank == -1 else DistributedSampler( train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate_fn) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // ( len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len( train_dataloader ) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0 }, ] args.warmup_steps = int(t_total * args.warmup_proportion) optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join( args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt")): # Load in optimizer and scheduler states optimizer.load_state_dict( torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict( torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path ) and "checkpoint" in args.model_name_or_path: # set global_step to gobal_step of last saved checkpoint from model path global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % ( len(train_dataloader) // args.gradient_accumulation_steps) logger.info( " Continuing training from checkpoint, will skip to saved global_step" ) logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() seed_everything( args.seed ) # Added here for reproductibility (even between python 2 and 3) for _ in range(int(args.num_train_epochs)): pbar = ProgressBar(n_total=len(train_dataloader), desc='Training') for step, batch in enumerate(train_dataloader): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "start_positions": batch[3], "end_positions": batch[4] } if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None) outputs = model(**inputs) loss = outputs[ 0] # model outputs are always tuple in pytorch-transformers (see doc) if args.n_gpu > 1: loss = loss.mean( ) # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() pbar(step, {'loss': loss.item()}) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) scheduler.step() # Update learning rate schedule optimizer.step() model.zero_grad() global_step += 1 if args.local_rank in [ -1, 0 ] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics print(" ") if args.local_rank == -1: # Only evaluate when single GPU otherwise metrics may not average well evaluate(args, model, tokenizer) if args.local_rank in [ -1, 0 ] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join( args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) tokenizer.save_vocabulary(output_dir) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) print(" ") if 'cuda' in str(args.device): torch.cuda.empty_cache() return global_step, tr_loss / global_step
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument('--markup', default='bios', type=str, choices=['bios', 'bio']) parser.add_argument('--loss_type', default='ce', type=str, choices=['lsr', 'focal', 'ce']) parser.add_argument( "--labels", default="", type=str, help= "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--train_max_seq_length", default=128, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--eval_max_seq_length", default=512, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Whether to run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--max_steps", default=-1, type=int, help= "If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training." ) parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( '--predict_all_checkpoints', action="store_true", help= "Predict all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument("--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory") parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() args.output_dir = args.output_dir + '{}'.format(args.model_type) if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) init_logger(log_file=args.output_dir + '/{}-{}-{}.log'.format( args.model_type, args.task_name, time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime()))) if os.path.exists(args.output_dir) and os.listdir( args.output_dir ) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed seed_everything(args.seed) # Prepare NER task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() label_list = processor.get_labels() args.id2label = {i: label for i, label in enumerate(label_list)} args.label2id = {label: i for i, label in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, loss_type=args.loss_type, cache_dir=args.cache_dir if args.cache_dir else None, soft_label=True) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = (model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_vocabulary(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) #Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))) logging.getLogger("pytorch_transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split( "-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) if global_step: result = { "{}_{}".format(global_step, k): v for k, v in result.items() } results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) if args.do_predict and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.predict_all_checkpoints > 0: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging checkpoints = [ x for x in checkpoints if x.split('-')[-1] == str(args.predict_checkpoints) ] logger.info("Predict the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) predict(args, model, tokenizer, prefix=prefix)
def evaluate(args, model, tokenizer, prefix=""): metric = SpanEntityScore(args.id2label) eval_output_dir = args.output_dir if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) eval_features = load_and_cache_examples(args, args.task_name, tokenizer, data_type='dev') args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Eval! logger.info("***** Running evaluation %s *****", prefix) logger.info(" Num examples = %d", len(eval_features)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 pbar = ProgressBar(n_total=len(eval_features), desc="Evaluating") for step, f in enumerate(eval_features): input_lens = f.input_len input_ids = torch.tensor([f.input_ids[:input_lens]], dtype=torch.long).to(args.device) input_mask = torch.tensor([f.input_mask[:input_lens]], dtype=torch.long).to(args.device) segment_ids = torch.tensor([f.segment_ids[:input_lens]], dtype=torch.long).to(args.device) start_ids = torch.tensor([f.start_ids[:input_lens]], dtype=torch.long).to(args.device) end_ids = torch.tensor([f.end_ids[:input_lens]], dtype=torch.long).to(args.device) subjects = f.subjects model.eval() with torch.no_grad(): inputs = { "input_ids": input_ids, "attention_mask": input_mask, "start_positions": start_ids, "end_positions": end_ids } if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = (segment_ids if args.model_type in ["bert", "xlnet"] else None) outputs = model(**inputs) tmp_eval_loss, start_logits, end_logits = outputs[:3] R = bert_extract_item(start_logits, end_logits) T = subjects metric.update(true_subject=T, pred_subject=R) if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean( ) # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 pbar(step) print(' ') eval_loss = eval_loss / nb_eval_steps eval_info, entity_info = metric.result() results = {f'{key}': value for key, value in eval_info.items()} results['loss'] = eval_loss logger.info("***** Eval results %s *****", prefix) info = "-".join( [f' {key}: {value:.4f} ' for key, value in results.items()]) logger.info(info) logger.info("***** Entity results %s *****", prefix) for key in sorted(entity_info.keys()): logger.info("******* %s results ********" % key) info = "-".join([ f' {key}: {value:.4f} ' for key, value in entity_info[key].items() ]) logger.info(info) return results
def evaluate(args, model, tokenizer, prefix=""): metric = SeqEntityScore(args.id2label, markup=args.markup) eval_output_dir = args.output_dir if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) eval_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='dev') args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler( eval_dataset) if args.local_rank == -1 else DistributedSampler( eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn) # Eval! logger.info("***** Running evaluation %s *****", prefix) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating") if isinstance(model, nn.DataParallel): model = model.module for step, batch in enumerate(eval_dataloader): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], 'input_lens': batch[4] } if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None) outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] tags, _ = model.crf._obtain_labels(logits, args.id2label, inputs['input_lens']) if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean( ) # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 out_label_ids = inputs['labels'].cpu().numpy().tolist() for i, label in enumerate(out_label_ids): temp_1 = [] temp_2 = [] for j, m in enumerate(label): if j == 0: continue elif out_label_ids[i][j] == args.label2id['[SEP]']: metric.update(pred_paths=[temp_2], label_paths=[temp_1]) break else: temp_1.append(args.id2label[out_label_ids[i][j]]) temp_2.append(tags[i][j]) pbar(step) print(' ') eval_loss = eval_loss / nb_eval_steps eval_info, entity_info = metric.result() results = {f'{key}': value for key, value in eval_info.items()} results['loss'] = eval_loss logger.info("***** Eval results %s *****", prefix) info = "-".join( [f' {key}: {value:.4f} ' for key, value in results.items()]) logger.info(info) logger.info("***** Entity results %s *****", prefix) for key in sorted(entity_info.keys()): logger.info("******* %s results ********" % key) info = "-".join([ f' {key}: {value:.4f} ' for key, value in entity_info[key].items() ]) logger.info(info) return results
from snlp.trainers import Trainer from snlp.tools.log import logger os.environ['CUDA_VISIBLE_DEVICES'] = "1" fixed_length_uttr = 20 fixed_length_resp = 20 fixed_length_turn = 5 start = time.time() cls_task = tasks.Classification(num_classes=2, losses = nn.CrossEntropyLoss()) cls_task.metrics = ['accuracy'] # 对数据进行预处理 file = "../sample_data/multi_qa.csv" logger.info("读取数据 %s" % os.path.basename(file)) data = pd.read_csv(file) data['label'] = 1 # 对数据进行预处理 ## 合并训练预处理器是一种leaky logger.info("使用Preprocessor处理数据") preprocessor = CNPreprocessorForMultiQA(stopwords=['\t']) preprocessor = preprocessor.fit(data, columns=['utterances', 'response']) data = preprocessor.transform(data) data = data[['D_num', 'turns', 'utterances', 'response', 'utterances_len', 'response_len', 'label']] data['label'] = data['label'].astype(int) # 划分训练集和测试集 train = data[:90] valid = data[90:]
def main(): parser = ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument("--config_path", default=None, type=str, required=True) parser.add_argument("--vocab_path", default=None, type=str, required=True) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--model_path", default='', type=str) parser.add_argument('--data_name', default='albert', type=str) parser.add_argument( "--file_num", type=int, default=10, help="Number of dynamic masking to pregenerate (with different masks)") parser.add_argument( "--reduce_memory", action="store_true", help= "Store training data as on-disc memmaps to massively reduce memory usage" ) parser.add_argument("--epochs", type=int, default=4, help="Number of epochs to train for") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--num_eval_steps', default=100) parser.add_argument('--num_save_steps', default=200) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight deay if we apply some.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--train_batch_size", default=4, type=int, help="Total batch size for training.") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Linear warmup over warmup_steps.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument('--max_grad_norm', default=1.0, type=float) parser.add_argument("--learning_rate", default=0.00176, type=float, help="The initial learning rate for Adam.") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16_opt_level', type=str, default='O2', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") args = parser.parse_args() args.data_dir = Path(args.data_dir) args.output_dir = Path(args.output_dir) pregenerated_data = args.data_dir / "corpus/train" init_logger(log_file=str(args.output_dir / "train_albert_model.log")) assert pregenerated_data.is_dir(), \ "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!" samples_per_epoch = 0 for i in range(args.file_num): data_file = pregenerated_data / f"{args.data_name}_file_{i}.json" metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json" if data_file.is_file() and metrics_file.is_file(): metrics = json.loads(metrics_file.read_text()) samples_per_epoch += metrics['num_training_examples'] else: if i == 0: exit("No training data was found!") print( f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})." ) print( "This script will loop over the available data, but training diversity may be negatively impacted." ) break logger.info(f"samples_per_epoch: {samples_per_epoch}") if args.local_rank == -1 or args.no_cuda: device = torch.device(f"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) args.n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}, " f"share_type: {args.share_type}") if args.gradient_accumulation_steps < 1: raise ValueError( f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1" ) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps seed_everything(args.seed) tokenizer = BertTokenizer.from_pretrained(args.vocab_path, do_lower_case=args.do_lower_case) total_train_examples = samples_per_epoch * args.epochs num_train_optimization_steps = int(total_train_examples / args.train_batch_size / args.gradient_accumulation_steps) if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size( ) args.warmup_steps = int(num_train_optimization_steps * args.warmup_proportion) bert_config = AlbertConfig.from_pretrained(args.config_path, share_type=args.share_type) model = AlbertForPreTraining(config=bert_config) if args.model_path: model = AlbertForPreTraining.from_pretrained(args.model_path) model.to(device) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdamW(params=optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=num_train_optimization_steps) # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if args.n_gpu > 1: model = torch.nn.DataParallel(model) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) global_step = 0 mask_metric = LMAccuracy() sop_metric = LMAccuracy() tr_mask_acc = AverageMeter() tr_sop_acc = AverageMeter() tr_loss = AverageMeter() tr_mask_loss = AverageMeter() tr_sop_loss = AverageMeter() loss_fct = CrossEntropyLoss(ignore_index=-1) train_logs = {} logger.info("***** Running training *****") logger.info(f" Num examples = {total_train_examples}") logger.info(f" Batch size = {args.train_batch_size}") logger.info(f" Num steps = {num_train_optimization_steps}") logger.info(f" warmup_steps = {args.warmup_steps}") start_time = time.time() seed_everything(args.seed) # Added here for reproducibility for epoch in range(args.epochs): for idx in range(args.file_num): epoch_dataset = PregeneratedDataset( file_id=idx, training_path=pregenerated_data, tokenizer=tokenizer, reduce_memory=args.reduce_memory, data_name=args.data_name) if args.local_rank == -1: train_sampler = RandomSampler(epoch_dataset) else: train_sampler = DistributedSampler(epoch_dataset) train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size) model.train() nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(train_dataloader): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch outputs = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) prediction_scores = outputs[0] seq_relationship_score = outputs[1] masked_lm_loss = loss_fct( prediction_scores.view(-1, bert_config.vocab_size), lm_label_ids.view(-1)) next_sentence_loss = loss_fct( seq_relationship_score.view(-1, 2), is_next.view(-1)) loss = masked_lm_loss + next_sentence_loss mask_metric(logits=prediction_scores.view( -1, bert_config.vocab_size), target=lm_label_ids.view(-1)) sop_metric(logits=seq_relationship_score.view(-1, 2), target=is_next.view(-1)) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() nb_tr_steps += 1 tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0)) tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0)) tr_loss.update(loss.item(), n=1) tr_mask_loss.update(masked_lm_loss.item(), n=1) tr_sop_loss.update(next_sentence_loss.item(), n=1) if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 if global_step % args.num_eval_steps == 0: now = time.time() eta = now - start_time if eta > 3600: eta_format = ('%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)) elif eta > 60: eta_format = '%d:%02d' % (eta // 60, eta % 60) else: eta_format = '%ds' % eta train_logs['loss'] = tr_loss.avg train_logs['mask_acc'] = tr_mask_acc.avg train_logs['sop_acc'] = tr_sop_acc.avg train_logs['mask_loss'] = tr_mask_loss.avg train_logs['sop_loss'] = tr_sop_loss.avg show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \ f'- ETA: {eta_format}' + "-".join( [f' {key}: {value:.4f} ' for key, value in train_logs.items()]) logger.info(show_info) tr_mask_acc.reset() tr_sop_acc.reset() tr_loss.reset() tr_mask_loss.reset() tr_sop_loss.reset() start_time = now if global_step % args.num_save_steps == 0: if args.local_rank in [-1, 0] and args.num_save_steps > 0: # Save model checkpoint output_dir = args.output_dir / f'lm-checkpoint-{global_step}' if not output_dir.exists(): output_dir.mkdir() # save model model_to_save = model.module if hasattr( model, 'module' ) else model # Take care of distributed/parallel training model_to_save.save_pretrained(str(output_dir)) torch.save(args, str(output_dir / 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) # save config output_config_file = output_dir / CONFIG_NAME with open(str(output_config_file), 'w') as f: f.write(model_to_save.config.to_json_string()) # save vocab tokenizer.save_vocabulary(output_dir)
def __init__(self, training_path, file_id, tokenizer, data_name, reduce_memory=False): self.tokenizer = tokenizer self.file_id = file_id data_file = training_path / f"{data_name}_file_{self.file_id}.json" metrics_file = training_path / f"{data_name}_file_{self.file_id}_metrics.json" assert data_file.is_file() and metrics_file.is_file() metrics = json.loads(metrics_file.read_text()) num_samples = metrics['num_training_examples'] seq_len = metrics['max_seq_len'] self.temp_dir = None self.working_dir = None if reduce_memory: self.temp_dir = TemporaryDirectory() self.working_dir = Path(self.temp_dir.name) input_ids = np.memmap(filename=self.working_dir / 'input_ids.memmap', mode='w+', dtype=np.int32, shape=(num_samples, seq_len)) input_masks = np.memmap(filename=self.working_dir / 'input_masks.memmap', shape=(num_samples, seq_len), mode='w+', dtype=np.bool) segment_ids = np.memmap(filename=self.working_dir / 'segment_ids.memmap', shape=(num_samples, seq_len), mode='w+', dtype=np.bool) lm_label_ids = np.memmap(filename=self.working_dir / 'lm_label_ids.memmap', shape=(num_samples, seq_len), mode='w+', dtype=np.int32) lm_label_ids[:] = -1 is_nexts = np.memmap(filename=self.working_dir / 'is_nexts.memmap', shape=(num_samples, ), mode='w+', dtype=np.bool) else: input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32) input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool) segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool) lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1) is_nexts = np.zeros(shape=(num_samples, ), dtype=np.bool) logger.info(f"Loading training examples for {str(data_file)}") with data_file.open() as f: for i, line in enumerate(f): line = line.strip() example = json.loads(line) features = convert_example_to_features(example, tokenizer, seq_len) input_ids[i] = features.input_ids segment_ids[i] = features.segment_ids input_masks[i] = features.input_mask lm_label_ids[i] = features.lm_label_ids is_nexts[i] = features.is_next assert i == num_samples - 1 # Assert that the sample count metric was true logger.info("Loading complete!") self.num_samples = num_samples self.seq_len = seq_len self.input_ids = input_ids self.input_masks = input_masks self.segment_ids = segment_ids self.lm_label_ids = lm_label_ids self.is_nexts = is_nexts
def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: ") parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list") parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--vocab_file", default='', type=str) parser.add_argument("--spm_model_file", default='', type=str) ## Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument( "--do_predict", action='store_true', help="Whether to run the model in inference mode on the test set.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--max_steps", default=-1, type=int, help= "If > 0: set total number of training steps to perform. Override num_train_epochs." ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training." ) parser.add_argument('--logging_steps', type=int, default=10, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=1000, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action='store_true', help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" ) parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument( '--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16', action='store_true', help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ) parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") os.environ['CUDA_VISIBLE_DEVICES'] = "0" args = parser.parse_args() if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) args.output_dir = args.output_dir + '{}'.format(args.model_type) if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name)) if os.path.exists(args.output_dir) and os.listdir( args.output_dir ) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed seed_everything(args.seed) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config = AlbertConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, spm_model_file=args.spm_model_file) model = AlbertForSentenceRanking.from_pretrained( args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr( model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Evaluation results = [] if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, spm_model_file=args.spm_model_file) checkpoints = [(0, args.output_dir)] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1] checkpoints = sorted(checkpoints, key=lambda x: x[0]) logger.info("Evaluate the following checkpoints: %s", checkpoints) for _, checkpoint in checkpoints: global_step = checkpoint.split( '-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = AlbertForSentenceRanking.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()]) output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt") with open(output_eval_file, "w") as writer: for key, value in results: writer.write("%s = %s\n" % (key, str(value)))
def train(args, train_dataset, model, tokenizer): """ Train the model """ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = SequentialSampler( train_dataset) if args.local_rank == -1 else DistributedSampler( train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate_fn) if args.max_steps > 0: num_training_steps = args.max_steps args.num_train_epochs = args.max_steps // ( len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: num_training_steps = len( train_dataloader ) // args.gradient_accumulation_steps * args.num_train_epochs args.warmup_steps = int(num_training_steps * args.warmup_proportion) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], 'weight_decay': args.weight_decay }, { 'params': [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0 }] # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) optimizer = AdamW(params=optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=num_training_steps) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", num_training_steps) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() seed_everything( args.seed ) # Added here for reproductibility (even between python 2 and 3) for _ in range(int(args.num_train_epochs)): pbar = ProgressBar(n_total=len(train_dataloader), desc='Training') for step, batch in enumerate(train_dataloader): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { 'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3] } inputs['token_type_ids'] = batch[2] outputs = model(**inputs) loss = outputs[ 0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean( ) # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [ -1, 0 ] and args.logging_steps > 0 and global_step % args.logging_steps == 0: #Log metrics if args.local_rank == -1: # Only evaluate when single GPU otherwise metrics may not average well evaluate(args, model, tokenizer) if args.local_rank in [ -1, 0 ] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr( model, 'module' ) else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) pbar(step, {'loss': loss.item()}) print(" ") if 'cuda' in str(args.device): torch.cuda.empty_cache() return global_step, tr_loss / global_step
def _run_epoch(self): """ Run each epoch. The training steps: - Get batch and feed them into model - Get outputs. Caculate all losses and sum them up - Loss backwards and optimizer steps - Evaluation - Update and output result """ num_batch = len(self._trainloader) train_loss = AverageMeter() with tqdm(enumerate(self._trainloader), total=num_batch, disable=not self._verbose) as pbar: for step, (inputs, target) in pbar: # Run Train outputs = self._model(inputs) ## 计算所有的loss并相加 loss = sum([c(outputs, target) for c in self._criterions]) self._backward(loss) ## 更新loss的值 train_loss.update(loss.item()) ## 设置Progress Bar pbar.set_description(f"Epoch {self._epoch}/{self._epochs}") pbar.set_postfix(loss=f"{loss.item():.3f}") self._writer.add_scalar("Loss/train", loss.item(), self._iteration) # Run Evaluate self._iteration += 1 if self._iteration % self._validate_interval == 0: pbar.update(1) if self._verbose: pbar.write(f"[Iter-{self._iteration} " f"Loss-{train_loss.avg:.3f}]") ## 更新validloader评估的结果 result, eval_loss = self.evaluate(self._validloader) m_string = "" for metric in result: res = result[metric] if not isinstance(metric, str): metric = metric.ALIAS[0] self._writer.add_scalar(f"{metric}/eval", res, self._iteration) m_string += f"| {metric}: {res} " logger.info( f"Epoch: {self._epoch} | Train Loss: {loss.item():.3f} | " f"Eval loss: {eval_loss.item(): .3f} " + m_string) if self._verbose: pbar.write(" Validation: " + '-'.join(f"{k}: {round(v, 4)}" for k, v in result.items())) ## Early Stopping self._early_stopping.update(result) if self._early_stopping.should_stop_early: self._save() pbar.write("Ran out of patience. Stop training...") break elif self._early_stopping.is_best_so_far: self._save()