def main():
    if csv:
        uttrs, resps = get_uttr_resp_csv(files)
    else:
        if data_type == "single":
            uttrs, resps = get_uttr_resps_oneline_single(files)
        else:
            uttrs, resps = get_uttr_resp_oneline_pair(files)

    logger.info("处理uttrance")
    for i, uttr in enumerate(uttrs):
        result = ""
        for ch in uttr:
            if is_chinese_punc(ch) or is_chinese_char(ch):
                result += f" {ch} "
            else:
                result += ch
        result = result.strip().replace("  ", " ")
        uttrs[i] = result

    dialogues = []
    for i, (uttr, resp) in tqdm(enumerate(zip(uttrs, resps))):
        d = copy.deepcopy(template)
        d["id"] = i
        d["utterance"] = uttr
        d["responses"][0]["reply"] = resp
        dialogues.append(d)

    with open(Path(basename) / to_file, 'w', encoding="utf8") as f:
        json.dump(dialogues, f, ensure_ascii=False, indent=4)
Exemple #2
0
    def evaluate(self, dataloader: DataLoader):
        result = dict()
        y_pred = self.predict(dataloader)
        y_true = dataloader.label
        if isinstance(self._task, tasks.Classification):
            y_pred_label = np.argmax(y_pred[:10], axis=-1)
            # 记录前10个真实标签和预测标签
            logger.info(
                f"The former 10 true label is {y_true[:10]}  | pred label is {y_pred_label}"
            )
        elif isinstance(self._task, tasks.Ranking):
            y_true = y_true.reshape(len(y_true), 1)
        loss = sum([
            c(torch.tensor(y_pred), torch.tensor(y_true))
            for c in self._criterions
        ])
        self._writer.add_scalar("Loss/eval", loss.item(), self._iteration)
        try:
            id_left = dataloader.id_left
        except:
            pass

        if isinstance(self._task, tasks.Ranking):
            for metric in self._task.metrics:
                result[metric] = self._eval_metric_on_data_frame(
                    metric, id_left, y_true, y_pred.squeeze(axis=-1))
        else:
            for metric in self._task.metrics:
                result[metric] = metric(y_true, y_pred)
        return result, loss
Exemple #3
0
    def save(self):
        """
        Save the trainer.

        `Trainer` parameters like epoch, best_so_far, model, optimizer
        and early_stopping will be savad to specific file path.

        :param path: Path to save trainer.

        """
        checkpoint = self._save_dir.joinpath('trainer.pt')
        logger.info(f" ** save trainer model to {checkpoint} ** ")
        if self._data_parallel:
            model = self._model.module.state_dict()
        else:
            model = self._model.state_dict()
        state = {
            'epoch': self._epoch,
            'model': model,
            'optimizer': self._optimizer.state_dict(),
            'early_stopping': self._early_stopping.state_dict(),
        }
        if self._epoch_scheduler:
            state['epoch_scheduler'] = self._epoch_scheduler.state_dict()
        if self._step_scheduler:
            state['step_scheduler'] = self._step_scheduler.state_dict()
        torch.save(state, checkpoint)
Exemple #4
0
def save_json(basename, json_files, tokenizer, model, device):
    for file in json_files:
        logger.info(f"正在处理文件 {file} ...")
        with open(Path(basename) / file, 'r', encoding="utf8") as f:
            records = json.load(f)
        for i, record in tqdm(enumerate(records)):
            uttr = record['utterance']
            uttr_list = re.split(r"\[U=\d+\]", uttr)
            uttr = uttr_list[-1]
            uttr = replace_kv(uttr).replace(" ", "")
            responses = record['responses']
            for j, reply in enumerate(responses):
                ans = reply['reply']
                ans = replace_kv(ans)
                pred = albert_predict(text_a=[uttr],
                                      text_b=[ans],
                                      tokenizer=tokenizer,
                                      model=model,
                                      device=device)
                lan_style = labels[pred[0]]
                ## 保存语言风格
                reply['language_style'] = lan_style
                responses[j] = reply
            records[i]['responses'] = responses

        save_file = to_file_prefix + "_" + file
        logger.info(f"处理完成并保存在 {save_file}")
        with open(save_file, 'w', encoding='utf8') as to_f:
            json.dump(records, to_f, ensure_ascii=False, indent=4)
Exemple #5
0
    def _load_model(self,
                    model: BaseModel,
                    device: typing.Union[torch.device, int, list,
                                         None] = None):
        if not isinstance(model, BaseModel):
            raise ValueError(f"model should be a `BaseModel` instance. "
                             f"But got {type(model)}")

        logger.info(" ** load model and device ** ")
        self._task = model.params['task']
        self._data_parallel = False
        self._model = model

        # 如果指定了多个GPU,则默认是数据并行
        if isinstance(device, list) and len(device):
            logger.info(" ** data parallel ** ")
            self._data_parallel = True
            self._model = torch.nn.DataParallel(self._model, device_ids=device)
            self._device = device[0]
        else:
            if not (isinstance(device, torch.device)
                    or isinstance(device, int)):
                device = torch.device(
                    "cuda" if torch.cuda.is_available() else "cpu")
                self._device = device
        self._model.to(self._device)
def get_dataloader(train_data, valid_data):
    train_dataset = PairDataset(train_data, num_neg=0)
    valid_dataset = PairDataset(valid_data, num_neg=0)
    padding = MultiQAPadding(fixed_length_uttr=fixed_length_uttr,
                             fixed_length_resp=fixed_length_resp,
                             fixed_length_turn=fixed_length_turn,
                             data_type=data_type)

    train_dataloader = DictDataLoader(train_dataset,
                                      batch_size=batch_size,
                                      turns=fixed_length_turn,
                                      stage='train',
                                      shuffle=True,
                                      sort=False,
                                      callback=padding)
    valid_dataloader = DictDataLoader(valid_dataset,
                                      batch_size=batch_size,
                                      turns=fixed_length_turn,
                                      stage='dev',
                                      shuffle=False,
                                      sort=False,
                                      callback=padding)

    for i, (x, y) in enumerate(train_dataloader):
        # 打印Utterance的形状
        logger.info(f"The shape of utternace is {x[constants.UTTRS].shape}")
        if i == 0:
            break
    return train_dataloader, valid_dataloader
Exemple #7
0
 def save_model(self):
     """Save the model."""
     checkpoint = self._save_dir.joinpath('model.pt')
     logger.info(f" ** save raw model to {checkpoint} ** ")
     if self._data_parallel:
         torch.save(self._model.module.state_dict(), checkpoint)
     else:
         torch.save(self._model.state_dict(), checkpoint)
def get_uttr_resp_oneline_pair(files):
    uttrs, resps = [], []
    for file in files:
        logger.info(f"正在处理文件 {file}")
        with open(Path(basename) / file, 'r', encoding="utf8") as f:
            for line in tqdm(f):
                line = line.strip()
                if line:
                    line_list = line.split("\t")
                    uttrs.append(line_list[0].strip().replace(" ", ""))
                    resps.append(line_list[-1].strip().replace(" ", ""))
    return uttrs, resps
Exemple #9
0
    def restore_model(self, checkpoint: typing.Union[str, Path]):
        """
        Restore model.

        :param checkpoint: A checkpoint from which to continue training.

        """
        logger.info(" ** restore raw model ** ")
        state = torch.load(checkpoint, map_location=self._device)
        if self._data_parallel:
            self._model.module.load_state_dict(state)
        else:
            self._model.load_state_dict(state)
Exemple #10
0
    def _load_path(self, checkpoint: typing.Union[str, Path],
                   save_dir: typing.Union[str, Path]):
        logger.info(" ** restore exist model checkpoint ** ")
        if not save_dir:
            save_dir = Path('.').joinpath('save')
            if not Path(save_dir).exists():
                Path(save_dir).mkdir(parents=True)

        self._save_dir = Path(save_dir)

        if checkpoint:
            if self._save_all:
                self.restore(checkpoint)
            else:
                self.restore_model(checkpoint)
Exemple #11
0
    def __init__(self,
                 model: BaseModel,
                 optimizer: Optimizer,
                 trainloader: DataLoader,
                 validloader: DataLoader,
                 device: typing.Union[torch.device, int, list, None] = None,
                 writer: SummaryWriter = None,
                 start_epoch: int = 1,
                 epochs: int = 10,
                 validate_interval: typing.Optional[int] = None,
                 epoch_scheduler: typing.Any = None,
                 step_scheduler: typing.Any = None,
                 clip_norm: typing.Union[float, int] = None,
                 l1_reg: float = 0.0,
                 l2_reg: float = 0.0,
                 patience: typing.Optional[int] = None,
                 key: typing.Any = None,
                 checkpoint: typing.Union[str, Path] = None,
                 save_dir: typing.Union[str, Path] = None,
                 save_all: bool = False,
                 verbose: int = 1,
                 **kwargs):
        log_dir = Path(save_dir).joinpath("runs")
        self._writer = writer or SummaryWriter(log_dir=log_dir)
        logger.info(f" ** save tensorboard to {self._writer.get_logdir()} ** ")

        self._load_model(model, device)
        self._load_dataloader(trainloader, validloader, validate_interval)
        self._optimizer = optimizer
        self._epoch_scheduler = epoch_scheduler  # 由于这里的scheduler是在每个epoch之后调用一次,所以在定义的时候注意设置更新的step数和epoch一致
        self._step_scheduler = step_scheduler  # 这个是针对step的scheduler
        self._clip_norm = clip_norm  # 梯度裁剪
        # 正则化系数
        self._l1_reg = l1_reg
        self._l2_reg = l2_reg
        self._criterions = self._task.losses

        if not key:
            key = self._task.metrics[0]
        self._early_stopping = EarlyStopping(patience=patience, key=key)

        self._start_epoch = start_epoch
        self._epochs = epochs
        self._iteration = 0
        self._verbose = verbose
        self._save_all = save_all

        self._load_path(checkpoint, save_dir)
Exemple #12
0
    def restore(self, checkpoint: typing.Union[str, Path] = None):
        """
        Restore trainer.

        :param checkpoint: A checkpoint from which to continue training.

        """
        logger.info(" ** restore trainer model ** ")
        state = torch.load(checkpoint, map_location=self._device)
        if self._data_parallel:
            self._model.module.load_state_dict(state['model'])
        else:
            self._model.load_state_dict(state['model'])
        self._optimizer.load_state_dict(state['optimizer'])
        self._start_epoch = state['epoch'] + 1
        self._early_stopping.load_state_dict(state['early_stopping'])
        if self._epoch_scheduler:
            self._epoch_scheduler.load_state_dict(state['epoch_scheduler'])
        if self._step_scheduler:
            self._step_scheduler.load_state_dict(state['step_scheduler'])
def get_uttr_resps_oneline_single(files):
    uttrs = []
    resps = []
    flag = 0
    for file in files:
        logger.info(f"正在处理文件 {file}")
        with open(Path(basename) / file, 'r', encoding="utf8") as f:
            for i, line in tqdm(enumerate(f)):
                line = line.strip()
                j = i
                if not line or flag:
                    if not line:
                        flag += 1
                    j = j - flag

                if line:
                    if j & 1 == 0:
                        uttrs.append(line)
                    else:
                        resps.append(line)
    return uttrs, resps
def preprocess_train_and_val(train_file, valid_file):
    logger.info("读取数据")
    train_data = pd.read_csv(train_file)
    valid_data = pd.read_csv(valid_file)
    train_data.dropna(axis=0, subset=[constants.UTTRS, constants.RESP], inplace=True)
    valid_data.dropna(axis=0, subset=[constants.UTTRS, constants.RESP], inplace=True)
    preprocessor = CNAlbertPreprocessorForMultiQA(Path(albert_path) / vocab_file,
                                                  uttr_len=fixed_length_uttr,
                                                  resp_len=fixed_length_resp,
                                                  add_special_tokens=add_specical_tokens)
    logger.info(f"训练集数据量为:{train_data.shape[0]} | 验证集数据量为:{valid_data.shape[0]}")

    logger.info("使用Preprocessor处理数据")
    train_data = preprocessor.transform(train_data,
                                        uttr_col=constants.UTTRS,
                                        resp_col=constants.RESP)
    valid_data = preprocessor.transform(valid_data,
                                        uttr_col=constants.UTTRS,
                                        resp_col=constants.RESP)
    use_cols = ['D_num', 'turns', 'utterances', 'response', 'utterances_len', 'response_len', 'label']
    train_data = train_data[use_cols]
    valid_data = valid_data[use_cols]

    label_type = int
    train_data[constants.LABEL] = train_data[constants.LABEL].astype(label_type)
    valid_data[constants.LABEL] = valid_data[constants.LABEL].astype(label_type)
    return train_data, valid_data
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    processor = processors[task]()
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(
        args.data_dir, 'cached_crf-{}_{}_{}_{}'.format(
            data_type,
            list(filter(None, args.model_name_or_path.split('/'))).pop(),
            str(args.train_max_seq_length if data_type ==
                'train' else args.eval_max_seq_length), str(task)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
        logger.info("Loading features from cached file %s",
                    cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
        if data_type == 'train':
            examples = processor.get_train_examples(args.data_dir)
        elif data_type == 'dev':
            examples = processor.get_dev_examples(args.data_dir)
        else:
            examples = processor.get_test_examples(args.data_dir)
        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                label_list=label_list,
                                                max_seq_length=args.train_max_seq_length if data_type=='train' \
                                                               else args.eval_max_seq_length,
                                                cls_token_at_end=bool(args.model_type in ["xlnet"]),
                                                pad_on_left=bool(args.model_type in ['xlnet']),
                                                cls_token = tokenizer.cls_token,
                                                cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
                                                sep_token=tokenizer.sep_token,
                                                # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
                                                )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s",
                        cached_features_file)
            torch.save(features, cached_features_file)
    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features],
                                   dtype=torch.long)
    all_label_ids = torch.tensor([f.label_ids for f in features],
                                 dtype=torch.long)
    all_lens = torch.tensor([f.input_len for f in features], dtype=torch.long)
    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                            all_lens, all_label_ids)
    return dataset
Exemple #16
0
def predict(args, model, tokenizer, prefix=""):
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(pred_output_dir)
    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='test')
    print(len(test_dataset))
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(
        test_dataset) if args.local_rank == -1 else DistributedSampler(
            test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)

    results = []
    output_submit_file = os.path.join(pred_output_dir, prefix,
                                      "test_prediction.json")
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": None,
                "end_positions": None
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
        start_logits, end_logits = outputs[:2]
        R = bert_extract_item(start_logits, end_logits)
        if R:
            label_entities = [[args.id2label[x[0]], x[1], x[2]] for x in R]
        else:
            label_entities = []
        json_d = {}
        json_d['id'] = step
        json_d['entities'] = label_entities
        results.append(json_d)
        pbar(step)
    print(" ")
    with open(output_submit_file, "w") as writer:
        for record in results:
            writer.write(json.dumps(record) + '\n')
def predict(args, model, tokenizer, prefix=""):
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(pred_output_dir)
    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='test')
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(
        test_dataset) if args.local_rank == -1 else DistributedSampler(
            test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)
    results = []
    output_submit_file = os.path.join(pred_output_dir, prefix,
                                      "test_prediction.json")
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")
    if isinstance(model, nn.DataParallel):
        model = model.module
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": None,
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            logits = outputs[0]
            preds, _ = model.crf._obtain_labels(logits, args.id2label,
                                                inputs['input_lens'])
        preds = preds[0][1:-1]  # [CLS]XXXX[SEP]
        label_entities = get_entities(preds, args.id2label, args.markup)
        json_d = {}
        json_d['id'] = step
        json_d['tag_seq'] = " ".join(preds)
        json_d['entities'] = label_entities
        results.append(json_d)
        pbar(step)
    print(" ")
    with open(output_submit_file, "w") as writer:
        for record in results:
            writer.write(json.dumps(record) + '\n')
Exemple #18
0
def process_and_save_txt(model, tokenizer, device):
    logger.info("准备数据")
    if files[0].endswith("json"):
        text_lefts, text_rights = get_data_json(basename, files)
    else:
        text_lefts, text_rights = get_data_txt(basename, files)
    logger.info("数据预处理完成")
    logger.info("开始预测...")
    preds = albert_predict(text_lefts,
                           text_b=text_rights,
                           tokenizer=tokenizer,
                           model=model,
                           device=device)
    #print(Counter(preds))
    logger.info("保存文件")
    with open(f"{to_file_prefix}_result.txt", 'w', encoding="utf8") as f:
        for q, a, l in zip(*(text_lefts, text_rights, preds)):
            f.write(labels[l] + "\t")
            f.write(q + "\t" + a)
            f.write("\n")
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task]()
    output_mode = "ranking"
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(
        args.data_dir, 'cached_{}_{}_{}_{}'.format(
            data_type,
            list(filter(None, args.model_name_or_path.split('/'))).pop(),
            str(args.max_seq_length), str(task)))
    if os.path.exists(cached_features_file):
        logger.info("Loading features from cached file %s",
                    cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
        if task in ['mnli', 'mnli-mm'] and 'roberta' in args.model_type:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1]

        if data_type == 'train':
            logger.info("Get train examples ...")
            examples = processor.get_train_examples(args.data_dir)
        elif data_type == 'dev':
            logger.info("Get dev examples ...")
            examples = processor.get_dev_examples(args.data_dir)
        else:
            examples = processor.get_test_examples(args.data_dir)

        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_seq_length=args.max_seq_length,
            output_mode=output_mode)
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s",
                        cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features],
                                 dtype=torch.long)
    all_attention_mask = torch.tensor([f.attention_mask for f in features],
                                      dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features],
                                      dtype=torch.long)
    all_lens = torch.tensor([f.input_len for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_labels = torch.tensor([f.label for f in features],
                                  dtype=torch.long)
    else:
        all_labels = torch.tensor([f.label for f in features],
                                  dtype=torch.float)
    dataset = TensorDataset(all_input_ids, all_attention_mask,
                            all_token_type_ids, all_lens, all_labels)
    return dataset
def evaluate(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (
        args.task_name, )
    eval_outputs_dirs = (args.output_dir, args.output_dir +
                         '-MM') if args.task_name == "mnli" else (
                             args.output_dir, )

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args,
                                               eval_task,
                                               tokenizer,
                                               data_type='dev')
        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(
            1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(
            eval_dataset) if args.local_rank == -1 else DistributedSampler(
                eval_dataset)
        eval_dataloader = DataLoader(eval_dataset,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size,
                                     collate_fn=collate_fn)

        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
        for step, batch in enumerate(eval_dataloader):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)
            with torch.no_grad():
                inputs = {
                    'input_ids': batch[0],
                    'attention_mask': batch[1],
                    'labels': batch[3]
                }
                inputs['token_type_ids'] = batch[2]
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]
                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(
                    out_label_ids,
                    inputs['labels'].detach().cpu().numpy(),
                    axis=0)
            pbar(step)
        print(' ')
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        elif args.output_mode == "ranking":
            preds = np.greater(preds, 0.5).astype(np.float)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
    return results
Exemple #21
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)
    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        },
    ]
    args.warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path
                      ) and "checkpoint" in args.model_name_or_path:
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)
        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for _ in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": batch[3],
                "end_positions": batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in pytorch-transformers (see doc)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            pbar(step, {'loss': loss.item()})
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1
                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    print(" ")
                    if args.local_rank == -1:
                        # Only evaluate when single GPU otherwise metrics may not average well
                        evaluate(args, model, tokenizer)
                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args,
                               os.path.join(output_dir, "training_args.bin"))
                    tokenizer.save_vocabulary(output_dir)
                    logger.info("Saving model checkpoint to %s", output_dir)
                    torch.save(optimizer.state_dict(),
                               os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(),
                               os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s",
                                output_dir)
        print(" ")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
Exemple #22
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written.",
    )

    # Other parameters
    parser.add_argument('--markup',
                        default='bios',
                        type=str,
                        choices=['bios', 'bio'])
    parser.add_argument('--loss_type',
                        default='ce',
                        type=str,
                        choices=['lsr', 'focal', 'ce'])
    parser.add_argument(
        "--labels",
        default="",
        type=str,
        help=
        "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
    )
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--train_max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument(
        "--eval_max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train",
                        action="store_true",
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action="store_true",
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        action="store_true",
                        help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action="store_true",
        help="Whether to run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case",
        action="store_true",
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )

    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )
    parser.add_argument("--logging_steps",
                        type=int,
                        default=50,
                        help="Log every X updates steps.")
    parser.add_argument("--save_steps",
                        type=int,
                        default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument(
        '--predict_all_checkpoints',
        action="store_true",
        help=
        "Predict all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda",
                        action="store_true",
                        help="Avoid using CUDA when available")
    parser.add_argument("--overwrite_output_dir",
                        action="store_true",
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        "--overwrite_cache",
        action="store_true",
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument("--seed",
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument("--server_ip",
                        type=str,
                        default="",
                        help="For distant debugging.")
    parser.add_argument("--server_port",
                        type=str,
                        default="",
                        help="For distant debugging.")
    args = parser.parse_args()

    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir + '/{}-{}-{}.log'.format(
        args.model_type, args.task_name,
        time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()
    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        loss_type=args.loss_type,
        cache_dir=args.cache_dir if args.cache_dir else None,
        soft_label=True)
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config)
    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = (model.module if hasattr(model, "module") else model
                         )  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_vocabulary(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
    #Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                "-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            if global_step:
                result = {
                    "{}_{}".format(global_step, k): v
                    for k, v in result.items()
                }
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))

    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.predict_all_checkpoints > 0:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
            checkpoints = [
                x for x in checkpoints
                if x.split('-')[-1] == str(args.predict_checkpoints)
            ]
        logger.info("Predict the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            predict(args, model, tokenizer, prefix=prefix)
Exemple #23
0
def evaluate(args, model, tokenizer, prefix=""):
    metric = SpanEntityScore(args.id2label)
    eval_output_dir = args.output_dir
    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)
    eval_features = load_and_cache_examples(args,
                                            args.task_name,
                                            tokenizer,
                                            data_type='dev')
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_features))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    pbar = ProgressBar(n_total=len(eval_features), desc="Evaluating")
    for step, f in enumerate(eval_features):
        input_lens = f.input_len
        input_ids = torch.tensor([f.input_ids[:input_lens]],
                                 dtype=torch.long).to(args.device)
        input_mask = torch.tensor([f.input_mask[:input_lens]],
                                  dtype=torch.long).to(args.device)
        segment_ids = torch.tensor([f.segment_ids[:input_lens]],
                                   dtype=torch.long).to(args.device)
        start_ids = torch.tensor([f.start_ids[:input_lens]],
                                 dtype=torch.long).to(args.device)
        end_ids = torch.tensor([f.end_ids[:input_lens]],
                               dtype=torch.long).to(args.device)
        subjects = f.subjects
        model.eval()
        with torch.no_grad():
            inputs = {
                "input_ids": input_ids,
                "attention_mask": input_mask,
                "start_positions": start_ids,
                "end_positions": end_ids
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (segment_ids if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            tmp_eval_loss, start_logits, end_logits = outputs[:3]
            R = bert_extract_item(start_logits, end_logits)
            T = subjects
            metric.update(true_subject=T, pred_subject=R)
            if args.n_gpu > 1:
                tmp_eval_loss = tmp_eval_loss.mean(
                )  # mean() to average on multi-gpu parallel evaluating
            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        pbar(step)
    print(' ')
    eval_loss = eval_loss / nb_eval_steps
    eval_info, entity_info = metric.result()
    results = {f'{key}': value for key, value in eval_info.items()}
    results['loss'] = eval_loss
    logger.info("***** Eval results %s *****", prefix)
    info = "-".join(
        [f' {key}: {value:.4f} ' for key, value in results.items()])
    logger.info(info)
    logger.info("***** Entity results %s *****", prefix)
    for key in sorted(entity_info.keys()):
        logger.info("******* %s results ********" % key)
        info = "-".join([
            f' {key}: {value:.4f} ' for key, value in entity_info[key].items()
        ])
        logger.info(info)
    return results
def evaluate(args, model, tokenizer, prefix=""):
    metric = SeqEntityScore(args.id2label, markup=args.markup)
    eval_output_dir = args.output_dir
    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)
    eval_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='dev')
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(
        eval_dataset) if args.local_rank == -1 else DistributedSampler(
            eval_dataset)
    eval_dataloader = DataLoader(eval_dataset,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
    if isinstance(model, nn.DataParallel):
        model = model.module
    for step, batch in enumerate(eval_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3],
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            tags, _ = model.crf._obtain_labels(logits, args.id2label,
                                               inputs['input_lens'])
            if args.n_gpu > 1:
                tmp_eval_loss = tmp_eval_loss.mean(
                )  # mean() to average on multi-gpu parallel evaluating
            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        out_label_ids = inputs['labels'].cpu().numpy().tolist()
        for i, label in enumerate(out_label_ids):
            temp_1 = []
            temp_2 = []
            for j, m in enumerate(label):
                if j == 0:
                    continue
                elif out_label_ids[i][j] == args.label2id['[SEP]']:
                    metric.update(pred_paths=[temp_2], label_paths=[temp_1])
                    break
                else:
                    temp_1.append(args.id2label[out_label_ids[i][j]])
                    temp_2.append(tags[i][j])
        pbar(step)
    print(' ')
    eval_loss = eval_loss / nb_eval_steps
    eval_info, entity_info = metric.result()
    results = {f'{key}': value for key, value in eval_info.items()}
    results['loss'] = eval_loss
    logger.info("***** Eval results %s *****", prefix)
    info = "-".join(
        [f' {key}: {value:.4f} ' for key, value in results.items()])
    logger.info(info)
    logger.info("***** Entity results %s *****", prefix)
    for key in sorted(entity_info.keys()):
        logger.info("******* %s results ********" % key)
        info = "-".join([
            f' {key}: {value:.4f} ' for key, value in entity_info[key].items()
        ])
        logger.info(info)
    return results
from snlp.trainers import Trainer
from snlp.tools.log import logger

os.environ['CUDA_VISIBLE_DEVICES'] = "1"

fixed_length_uttr = 20
fixed_length_resp = 20
fixed_length_turn = 5

start = time.time()
cls_task = tasks.Classification(num_classes=2, losses = nn.CrossEntropyLoss())
cls_task.metrics = ['accuracy']

# 对数据进行预处理
file = "../sample_data/multi_qa.csv"
logger.info("读取数据 %s" % os.path.basename(file))
data = pd.read_csv(file)
data['label'] = 1

# 对数据进行预处理
## 合并训练预处理器是一种leaky
logger.info("使用Preprocessor处理数据")
preprocessor = CNPreprocessorForMultiQA(stopwords=['\t'])
preprocessor = preprocessor.fit(data, columns=['utterances', 'response'])
data = preprocessor.transform(data)
data = data[['D_num', 'turns', 'utterances', 'response', 'utterances_len', 'response_len', 'label']]
data['label'] =  data['label'].astype(int)

# 划分训练集和测试集
train = data[:90]
valid = data[90:]
Exemple #26
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--config_path", default=None, type=str, required=True)
    parser.add_argument("--vocab_path", default=None, type=str, required=True)
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--model_path", default='', type=str)
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="Number of epochs to train for")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument('--num_eval_steps', default=100)
    parser.add_argument('--num_save_steps', default=200)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument('--max_grad_norm', default=1.0, type=float)
    parser.add_argument("--learning_rate",
                        default=0.00176,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O2',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    args = parser.parse_args()

    args.data_dir = Path(args.data_dir)
    args.output_dir = Path(args.output_dir)

    pregenerated_data = args.data_dir / "corpus/train"
    init_logger(log_file=str(args.output_dir / "train_albert_model.log"))
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
        metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(f"cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}, "
        f"share_type: {args.share_type}")

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    seed_everything(args.seed)
    tokenizer = BertTokenizer.from_pretrained(args.vocab_path,
                                              do_lower_case=args.do_lower_case)
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = AlbertConfig.from_pretrained(args.config_path,
                                               share_type=args.share_type)
    model = AlbertForPreTraining(config=bert_config)
    if args.model_path:
        model = AlbertForPreTraining.from_pretrained(args.model_path)
    model.to(device)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(params=optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=num_train_optimization_steps)
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    global_step = 0
    mask_metric = LMAccuracy()
    sop_metric = LMAccuracy()
    tr_mask_acc = AverageMeter()
    tr_sop_acc = AverageMeter()
    tr_loss = AverageMeter()
    tr_mask_loss = AverageMeter()
    tr_sop_loss = AverageMeter()
    loss_fct = CrossEntropyLoss(ignore_index=-1)

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}")
    logger.info(f"  Num steps = {num_train_optimization_steps}")
    logger.info(f"  warmup_steps = {args.warmup_steps}")
    start_time = time.time()
    seed_everything(args.seed)  # Added here for reproducibility
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(
                file_id=idx,
                training_path=pregenerated_data,
                tokenizer=tokenizer,
                reduce_memory=args.reduce_memory,
                data_name=args.data_name)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset,
                                          sampler=train_sampler,
                                          batch_size=args.train_batch_size)
            model.train()
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                outputs = model(input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask)
                prediction_scores = outputs[0]
                seq_relationship_score = outputs[1]

                masked_lm_loss = loss_fct(
                    prediction_scores.view(-1, bert_config.vocab_size),
                    lm_label_ids.view(-1))
                next_sentence_loss = loss_fct(
                    seq_relationship_score.view(-1, 2), is_next.view(-1))
                loss = masked_lm_loss + next_sentence_loss

                mask_metric(logits=prediction_scores.view(
                    -1, bert_config.vocab_size),
                            target=lm_label_ids.view(-1))
                sop_metric(logits=seq_relationship_score.view(-1, 2),
                           target=is_next.view(-1))

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0))
                tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0))
                tr_loss.update(loss.item(), n=1)
                tr_mask_loss.update(masked_lm_loss.item(), n=1)
                tr_sop_loss.update(next_sentence_loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    now = time.time()
                    eta = now - start_time
                    if eta > 3600:
                        eta_format = ('%d:%02d:%02d' %
                                      (eta // 3600,
                                       (eta % 3600) // 60, eta % 60))
                    elif eta > 60:
                        eta_format = '%d:%02d' % (eta // 60, eta % 60)
                    else:
                        eta_format = '%ds' % eta
                    train_logs['loss'] = tr_loss.avg
                    train_logs['mask_acc'] = tr_mask_acc.avg
                    train_logs['sop_acc'] = tr_sop_acc.avg
                    train_logs['mask_loss'] = tr_mask_loss.avg
                    train_logs['sop_loss'] = tr_sop_loss.avg
                    show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
                                f'- ETA: {eta_format}' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_mask_acc.reset()
                    tr_sop_acc.reset()
                    tr_loss.reset()
                    tr_mask_loss.reset()
                    tr_sop_loss.reset()
                    start_time = now

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = args.output_dir / f'lm-checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(
                            model, 'module'
                        ) else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

                        # save config
                        output_config_file = output_dir / CONFIG_NAME
                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())
                        # save vocab
                        tokenizer.save_vocabulary(output_dir)
Exemple #27
0
 def __init__(self,
              training_path,
              file_id,
              tokenizer,
              data_name,
              reduce_memory=False):
     self.tokenizer = tokenizer
     self.file_id = file_id
     data_file = training_path / f"{data_name}_file_{self.file_id}.json"
     metrics_file = training_path / f"{data_name}_file_{self.file_id}_metrics.json"
     assert data_file.is_file() and metrics_file.is_file()
     metrics = json.loads(metrics_file.read_text())
     num_samples = metrics['num_training_examples']
     seq_len = metrics['max_seq_len']
     self.temp_dir = None
     self.working_dir = None
     if reduce_memory:
         self.temp_dir = TemporaryDirectory()
         self.working_dir = Path(self.temp_dir.name)
         input_ids = np.memmap(filename=self.working_dir /
                               'input_ids.memmap',
                               mode='w+',
                               dtype=np.int32,
                               shape=(num_samples, seq_len))
         input_masks = np.memmap(filename=self.working_dir /
                                 'input_masks.memmap',
                                 shape=(num_samples, seq_len),
                                 mode='w+',
                                 dtype=np.bool)
         segment_ids = np.memmap(filename=self.working_dir /
                                 'segment_ids.memmap',
                                 shape=(num_samples, seq_len),
                                 mode='w+',
                                 dtype=np.bool)
         lm_label_ids = np.memmap(filename=self.working_dir /
                                  'lm_label_ids.memmap',
                                  shape=(num_samples, seq_len),
                                  mode='w+',
                                  dtype=np.int32)
         lm_label_ids[:] = -1
         is_nexts = np.memmap(filename=self.working_dir / 'is_nexts.memmap',
                              shape=(num_samples, ),
                              mode='w+',
                              dtype=np.bool)
     else:
         input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
         input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
         segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
         lm_label_ids = np.full(shape=(num_samples, seq_len),
                                dtype=np.int32,
                                fill_value=-1)
         is_nexts = np.zeros(shape=(num_samples, ), dtype=np.bool)
     logger.info(f"Loading training examples for {str(data_file)}")
     with data_file.open() as f:
         for i, line in enumerate(f):
             line = line.strip()
             example = json.loads(line)
             features = convert_example_to_features(example, tokenizer,
                                                    seq_len)
             input_ids[i] = features.input_ids
             segment_ids[i] = features.segment_ids
             input_masks[i] = features.input_mask
             lm_label_ids[i] = features.lm_label_ids
             is_nexts[i] = features.is_next
     assert i == num_samples - 1  # Assert that the sample count metric was true
     logger.info("Loading complete!")
     self.num_samples = num_samples
     self.seq_len = seq_len
     self.input_ids = input_ids
     self.input_masks = input_masks
     self.segment_ids = segment_ids
     self.lm_label_ids = lm_label_ids
     self.is_nexts = is_nexts
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--model_type",
                        default=None,
                        type=str,
                        required=True,
                        help="Model type selected in the list: ")
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list")
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--vocab_file", default='', type=str)
    parser.add_argument("--spm_model_file", default='', type=str)

    ## Other parameters
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_predict",
        action='store_true',
        help="Whether to run the model in inference mode on the test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-6,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs."
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument('--logging_steps',
                        type=int,
                        default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps',
                        type=int,
                        default=1000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")

    os.environ['CUDA_VISIBLE_DEVICES'] = "0"

    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir +
                '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    # Setup logging
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config = AlbertConfig.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name)
    tokenizer = tokenization_albert.FullTokenizer(
        vocab_file=args.vocab_file,
        do_lower_case=args.do_lower_case,
        spm_model_file=args.spm_model_file)
    model = AlbertForSentenceRanking.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config)
    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
            spm_model_file=args.spm_model_file)
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSentenceRanking.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = SequentialSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    if args.max_steps > 0:
        num_training_steps = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        num_training_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    args.warmup_steps = int(num_training_steps * args.warmup_proportion)
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    optimizer = AdamW(params=optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=num_training_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", num_training_steps)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for _ in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }
            inputs['token_type_ids'] = batch[2]
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(),
                                               args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

            if args.local_rank in [
                    -1, 0
            ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                #Log metrics
                if args.local_rank == -1:  # Only evaluate when single GPU otherwise metrics may not average well
                    evaluate(args, model, tokenizer)

            if args.local_rank in [
                    -1, 0
            ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir,
                                          'checkpoint-{}'.format(global_step))
                if not os.path.exists(output_dir):
                    os.makedirs(output_dir)
                model_to_save = model.module if hasattr(
                    model, 'module'
                ) else model  # Take care of distributed/parallel training
                model_to_save.save_pretrained(output_dir)
                torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                logger.info("Saving model checkpoint to %s", output_dir)
            pbar(step, {'loss': loss.item()})
        print(" ")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
Exemple #30
0
    def _run_epoch(self):
        """
        Run each epoch.

        The training steps:
            - Get batch and feed them into model
            - Get outputs. Caculate all losses and sum them up
            - Loss backwards and optimizer steps
            - Evaluation
            - Update and output result
        """
        num_batch = len(self._trainloader)
        train_loss = AverageMeter()
        with tqdm(enumerate(self._trainloader),
                  total=num_batch,
                  disable=not self._verbose) as pbar:
            for step, (inputs, target) in pbar:
                # Run Train
                outputs = self._model(inputs)
                ## 计算所有的loss并相加
                loss = sum([c(outputs, target) for c in self._criterions])

                self._backward(loss)
                ## 更新loss的值
                train_loss.update(loss.item())

                ## 设置Progress Bar
                pbar.set_description(f"Epoch {self._epoch}/{self._epochs}")
                pbar.set_postfix(loss=f"{loss.item():.3f}")
                self._writer.add_scalar("Loss/train", loss.item(),
                                        self._iteration)

                # Run Evaluate
                self._iteration += 1
                if self._iteration % self._validate_interval == 0:
                    pbar.update(1)
                    if self._verbose:
                        pbar.write(f"[Iter-{self._iteration} "
                                   f"Loss-{train_loss.avg:.3f}]")
                    ## 更新validloader评估的结果
                    result, eval_loss = self.evaluate(self._validloader)
                    m_string = ""
                    for metric in result:
                        res = result[metric]
                        if not isinstance(metric, str):
                            metric = metric.ALIAS[0]
                        self._writer.add_scalar(f"{metric}/eval", res,
                                                self._iteration)
                        m_string += f"| {metric}: {res} "

                    logger.info(
                        f"Epoch: {self._epoch} | Train Loss: {loss.item():.3f} | "
                        f"Eval loss: {eval_loss.item(): .3f} " + m_string)
                    if self._verbose:
                        pbar.write(" Validation: " +
                                   '-'.join(f"{k}: {round(v, 4)}"
                                            for k, v in result.items()))
                    ## Early Stopping
                    self._early_stopping.update(result)
                    if self._early_stopping.should_stop_early:
                        self._save()
                        pbar.write("Ran out of patience. Stop training...")
                        break
                    elif self._early_stopping.is_best_so_far:
                        self._save()