Example #1
0
def test_te_app():
    """ Test a single traffic engineering app"""
    topo = complete_topology(4)
    for link in topo.links():
        topo.set_resource(link, BANDWIDTH, 1)
    tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100)
    appconfig = {
        'name': u'te',
        'constraints': [(Constraint.ROUTE_ALL, (), {})],
        'obj': (Objective.MIN_LINK_LOAD, (BANDWIDTH, ), {}),
        'resource_cost': {
            BANDWIDTH: (LINKS, 1, None)
        }
    }
    app = App(pptc, **appconfig)
    caps = NetworkCaps(topo)
    caps.add_cap(BANDWIDTH, cap=1)
    opt = from_app(topo, app, NetworkConfig(caps))
    opt.solve()
    assert opt.is_solved()
    # THE solution is 1-objective because of the maximization flip
    solution = 1 - opt.get_solved_objective(app)[0]
    # Use abs(actual - exprected) because floating point errors
    assert solution == .333333 or abs(solution - .33333) <= EPSILON
    solution = 1 - opt.get_solved_objective()
    assert solution == .333333 or abs(solution - .33333) <= EPSILON
Example #2
0
def test_maxflow(cap):
    """ Check that maxflow works correctly, for a single traffic class """
    # Generate a topology:
    topo = complete_topology(4)
    for link in topo.links():
        topo.set_resource(link, BANDWIDTH, 1)
    tcs = [TrafficClass(0, u'classname', 0, 2, array([3]))]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100)

    appconfig = {
        'name': u'mf',
        'constraints': [],
        'obj': (Objective.MAX_FLOW, (), {}),
        'resource_cost': {
            BANDWIDTH: (LINKS, 1, None)
        }
    }
    app = App(pptc, **appconfig)
    caps = NetworkCaps(topo)
    caps.add_cap(BANDWIDTH, cap=cap)
    opt = from_app(topo, app, NetworkConfig(caps))
    opt.solve()
    assert opt.is_solved()
    # Ensure that both app objective and global objective are the same
    # Also, use abs(actual - exprected) because floating point errors
    solution = opt.get_solved_objective(app)[0]
    assert solution == cap or abs(solution - cap) <= EPSILON
    solution = opt.get_solved_objective()
    assert solution == cap or abs(solution - cap) <= EPSILON
Example #3
0
def test_mbox_load_balancing():
    """Test the middlebox loadbalancing"""

    topo = complete_topology(4)
    for n in topo.nodes():
        topo.set_resource(n, CPU, 1)
        topo.set_mbox(n)
    tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo,
                             tcs,
                             has_mbox_predicate,
                             modify_func=use_mbox_modifier,
                             cutoff=100)
    appconfig = {
        'name': u'mb_lb',
        'constraints': [(Constraint.ROUTE_ALL, (), {})],
        'obj': (Objective.MIN_NODE_LOAD, (CPU, ), {}),
        'resource_cost': {
            CPU: (MBOXES, 1, None)
        }
    }
    app = App(pptc, **appconfig)
    caps = NetworkCaps(topo)
    caps.add_cap(CPU, cap=1)
    opt = from_app(topo, app, NetworkConfig(caps))
    opt.solve()
    assert opt.is_solved()
    # THE solution is 1-objective because of the maximization flip
    solution = 1 - opt.get_solved_objective(app)[0]
    # Use abs(actual - exprected) because floating point errors
    assert solution == .25 or abs(solution - .25) <= EPSILON
    solution = 1 - opt.get_solved_objective()
    assert solution == .25 or abs(solution - .25) <= EPSILON
Example #4
0
def pptc(topo):
    # generate a dummy TM and traffic classes
    tm = tmgen.exact_tm(topo.num_nodes(), 1)
    tc = traffic_classes(tm, {u'all': 1}, as_dict=False)
    # generate all possibe paths
    res = generate_paths_tc(topo, tc, null_predicate, 10, max_paths=float('inf'))
    return res
Example #5
0
def test_min_latency_app():
    """Test a single min latency app"""
    topo = complete_topology(4)
    for link in topo.links():
        topo.set_resource(link, BANDWIDTH, 1)
    tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100)
    appconfig = {
        'name': u'te',
        'constraints': [(Constraint.ROUTE_ALL, (), {})],
        'obj': (Objective.MIN_LATENCY, (), {}),
        'resource_cost': {
            BANDWIDTH: (LINKS, 1, None)
        }
    }
    app = App(pptc, **appconfig)
    caps = NetworkCaps(topo)
    caps.add_cap(BANDWIDTH, cap=1)
    opt = from_app(topo, app, NetworkConfig(caps))
    opt.solve()
    assert opt.is_solved()

    # norm factor for latency is diameter * n^2
    norm = topo.diameter() * 16
    # the objective is 1-normalized latency, and latency is 1.
    # because 1 path with flow fraction of 1.
    solution = opt.get_solved_objective(app)[0]
    assert solution == 1 - 1 / norm or abs(solution -
                                           (1 - 1 / norm)) <= EPSILON
    solution = opt.get_solved_objective()
    assert solution == 1 - 1 / norm or abs(solution -
                                           (1 - 1 / norm)) <= EPSILON
Example #6
0
def test_mbox_load_balancing_all_tcs():
    """Test the middlebox loadbalancing"""

    topo = complete_topology(4)
    for n in topo.nodes():
        topo.set_resource(n, CPU, 1)
        topo.set_mbox(n)
    tcs = [TrafficClass(0, u'classname', s, t, array([1])) for (s, t) in product(topo.nodes(), repeat=2)]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, has_mbox_predicate, modify_func=use_mbox_modifier, cutoff=100)
    appconfig = {
        'name': u'mb_lb',
        'constraints': [(Constraint.ROUTE_ALL, (), {})],
        'obj': (Objective.MIN_NODE_LOAD, (CPU,), {}),
        'resource_cost': {CPU: (MBOXES, 1, None)}
    }
    app = App(pptc, **appconfig)
    caps = NetworkCaps(topo)
    caps.add_cap(CPU, cap=1)
    opt = from_app(topo, app, NetworkConfig(caps))
    opt.solve()
    assert opt.is_solved()
    # THE solution is 1-objective because of the maximization flip
    solution = 1 - opt.get_solved_objective(app)[0]
    # Use abs(actual - exprected) because floating point errors
    assert solution == 1 or abs(solution - 1) <= EPSILON
    solution = 1 - opt.get_solved_objective()
    assert solution == 1 or abs(solution - 1) <= EPSILON
Example #7
0
def test_maxflow_inapp_caps(cap):
    """Text maxflow, but use the CAP constraint instead of global network caps"""
    # Generate a topology:
    topo = complete_topology(4)
    for link in topo.links():
        topo.set_resource(link, BANDWIDTH, 1)
    tcs = [TrafficClass(0, u'classname', 0, 2, array([3]))]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100)
    caps = {link: cap for link in topo.links()}
    appconfig = {
        'name': u'mf',
        'constraints': [(Constraint.CAP_LINKS, (BANDWIDTH, caps), {})],
        'obj': (Objective.MAX_FLOW, (), {}),
        'resource_cost': {BANDWIDTH: (LINKS, 1, None)}
    }
    app = App(pptc, **appconfig)
    opt = from_app(topo, app, NetworkConfig())
    opt.solve()
    assert opt.is_solved()
    # Ensure that both app objective and global objective are the same
    # Also, use abs(actual - exprected) because floating point errors
    solution = opt.get_solved_objective(app)[0]
    assert solution == cap or abs(solution - cap) <= EPSILON
    solution = opt.get_solved_objective()
    assert solution == cap or abs(solution - cap) <= EPSILON
Example #8
0
def test_te_app():
    """ Test a single traffic engineering app"""
    topo = complete_topology(4)
    for link in topo.links():
        topo.set_resource(link, BANDWIDTH, 1)
    tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100)
    appconfig = {
        'name': u'te',
        'constraints': [(Constraint.ROUTE_ALL, (), {})],
        'obj': (Objective.MIN_LINK_LOAD, (BANDWIDTH,), {}),
        'resource_cost': {BANDWIDTH: (LINKS, 1, None)}
    }
    app = App(pptc, **appconfig)
    caps = NetworkCaps(topo)
    caps.add_cap(BANDWIDTH, cap=1)
    opt = from_app(topo, app, NetworkConfig(caps))
    opt.solve()
    assert opt.is_solved()
    # THE solution is 1-objective because of the maximization flip
    solution = 1 - opt.get_solved_objective(app)[0]
    # Use abs(actual - exprected) because floating point errors
    assert solution == .333333 or abs(solution - .33333) <= EPSILON
    solution = 1 - opt.get_solved_objective()
    assert solution == .333333 or abs(solution - .33333) <= EPSILON
Example #9
0
def test_min_latency_app():
    """Test a single min latency app"""
    topo = complete_topology(4)
    for link in topo.links():
        topo.set_resource(link, BANDWIDTH, 1)
    tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100)
    appconfig = {
        'name': u'te',
        'constraints': [(Constraint.ROUTE_ALL, (), {})],
        'obj': (Objective.MIN_LATENCY, (), {}),
        'resource_cost': {BANDWIDTH: (LINKS, 1, None)}
    }
    app = App(pptc, **appconfig)
    caps = NetworkCaps(topo)
    caps.add_cap(BANDWIDTH, cap=1)
    opt = from_app(topo, app, NetworkConfig(caps))
    opt.solve()
    assert opt.is_solved()

    # norm factor for latency is diameter * n^2
    norm = topo.diameter() * 16
    # the objective is 1-normalized latency, and latency is 1.
    # because 1 path with flow fraction of 1.
    solution = opt.get_solved_objective(app)[0]
    assert solution == 1 - 1 / norm or abs(solution - (1 - 1 / norm)) <= EPSILON
    solution = opt.get_solved_objective()
    assert solution == 1 - 1 / norm or abs(solution - (1 - 1 / norm)) <= EPSILON
Example #10
0
def pptc(topo):
    # generate a dummy TM and traffic classes
    tm = tmgen.exact_tm(topo.num_nodes(), 1)
    tc = traffic_classes(tm, {u'all': 1}, as_dict=False)
    # generate all possibe paths
    res = generate_paths_tc(topo,
                            tc,
                            null_predicate,
                            10,
                            max_paths=float('inf'))
    return res
Example #11
0
def pptc():
    """
    An example paths per traffic class
    """
    # get a complete topology
    topo = complete_topology(5)
    # generate a dummy TM and traffic classes
    tm = tmgen.uniform_tm(5, 20, 50, 1)
    tc = traffic_classes(tm, {u'all': 1}, as_dict=False)
    # generate all possibe paths
    res = generate_paths_tc(topo, tc, null_predicate, 10, numpy.inf)
    return res
Example #12
0
def test_shortest_path():
    """ Check that we can correctly implement shortest path routing """
    # Generate a topology:
    topo = complete_topology(5)

    # Generate a single traffic class:
    # TrafficClass (id, name, source node, destination node)
    tcs = [TrafficClass(0, u'classname', 0, 2)]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100)
    # Application configuration
    appconfig = {
        'name': u'minLatencyApp',
        'constraints': [(Constraint.ROUTE_ALL, (pptc.tcs(), ), {})],
        'obj': (Objective.MIN_LATENCY, (), {}),
        'resource_cost': {}
    }

    # Create an application based on our config
    app = App(pptc, **appconfig)

    # Create and solve an optimization based on the app
    # No link capacities will just result in a single shortest path
    opt = from_app(topo, app, NetworkConfig(None))
    opt.solve()
    assert opt.is_solved()

    paths = opt.get_paths()
    for pi, p in enumerate(paths.paths(tcs[0])):
        if list(p.nodes()) == [0, 2]:
            assert p.flow_fraction() == 1
        else:
            assert p.flow_fraction() == 0

    # norm factor for latency is diameter * n^2
    norm = topo.diameter() * 25
    # the objective is 1-normalized latency, and latency is 1.
    # because 1 path with flow fraction of 1.
    solution = opt.get_solved_objective(app)[0]
    assert solution == 1 - 1 / norm or abs(solution - 1 - 1 / norm) <= EPSILON
    solution = opt.get_solved_objective()
    assert solution == 1 - 1 / norm or abs(solution - 1 - 1 / norm) <= EPSILON
Example #13
0
def test_shortest_path():
    """ Check that we can correctly implement shortest path routing """
    # Generate a topology:
    topo = complete_topology(5)

    # Generate a single traffic class:
    # TrafficClass (id, name, source node, destination node)
    tcs = [TrafficClass(0, u'classname', 0, 2)]
    # Generate all paths for this traffic class
    pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100)
    # Application configuration
    appconfig = {
        'name': u'minLatencyApp',
        'constraints': [(Constraint.ROUTE_ALL, (pptc.tcs(),), {})],
        'obj': (Objective.MIN_LATENCY, (), {}),
        'resource_cost': {}
    }

    # Create an application based on our config
    app = App(pptc, **appconfig)

    # Create and solve an optimization based on the app
    # No link capacities will just result in a single shortest path
    opt = from_app(topo, app, NetworkConfig(None))
    opt.solve()
    assert opt.is_solved()

    paths = opt.get_paths()
    for pi, p in enumerate(paths.paths(tcs[0])):
        if list(p.nodes()) == [0, 2]:
            assert p.flow_fraction() == 1
        else:
            assert p.flow_fraction() == 0

    # norm factor for latency is diameter * n^2
    norm = topo.diameter() * 25
    # the objective is 1-normalized latency, and latency is 1.
    # because 1 path with flow fraction of 1.
    solution = opt.get_solved_objective(app)[0]
    assert solution == 1 - 1 / norm or abs(solution - 1 - 1 / norm) <= EPSILON
    solution = opt.get_solved_objective()
    assert solution == 1 - 1 / norm or abs(solution - 1 - 1 / norm) <= EPSILON