def test_te_app(): """ Test a single traffic engineering app""" topo = complete_topology(4) for link in topo.links(): topo.set_resource(link, BANDWIDTH, 1) tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100) appconfig = { 'name': u'te', 'constraints': [(Constraint.ROUTE_ALL, (), {})], 'obj': (Objective.MIN_LINK_LOAD, (BANDWIDTH, ), {}), 'resource_cost': { BANDWIDTH: (LINKS, 1, None) } } app = App(pptc, **appconfig) caps = NetworkCaps(topo) caps.add_cap(BANDWIDTH, cap=1) opt = from_app(topo, app, NetworkConfig(caps)) opt.solve() assert opt.is_solved() # THE solution is 1-objective because of the maximization flip solution = 1 - opt.get_solved_objective(app)[0] # Use abs(actual - exprected) because floating point errors assert solution == .333333 or abs(solution - .33333) <= EPSILON solution = 1 - opt.get_solved_objective() assert solution == .333333 or abs(solution - .33333) <= EPSILON
def test_maxflow(cap): """ Check that maxflow works correctly, for a single traffic class """ # Generate a topology: topo = complete_topology(4) for link in topo.links(): topo.set_resource(link, BANDWIDTH, 1) tcs = [TrafficClass(0, u'classname', 0, 2, array([3]))] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100) appconfig = { 'name': u'mf', 'constraints': [], 'obj': (Objective.MAX_FLOW, (), {}), 'resource_cost': { BANDWIDTH: (LINKS, 1, None) } } app = App(pptc, **appconfig) caps = NetworkCaps(topo) caps.add_cap(BANDWIDTH, cap=cap) opt = from_app(topo, app, NetworkConfig(caps)) opt.solve() assert opt.is_solved() # Ensure that both app objective and global objective are the same # Also, use abs(actual - exprected) because floating point errors solution = opt.get_solved_objective(app)[0] assert solution == cap or abs(solution - cap) <= EPSILON solution = opt.get_solved_objective() assert solution == cap or abs(solution - cap) <= EPSILON
def test_mbox_load_balancing(): """Test the middlebox loadbalancing""" topo = complete_topology(4) for n in topo.nodes(): topo.set_resource(n, CPU, 1) topo.set_mbox(n) tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, has_mbox_predicate, modify_func=use_mbox_modifier, cutoff=100) appconfig = { 'name': u'mb_lb', 'constraints': [(Constraint.ROUTE_ALL, (), {})], 'obj': (Objective.MIN_NODE_LOAD, (CPU, ), {}), 'resource_cost': { CPU: (MBOXES, 1, None) } } app = App(pptc, **appconfig) caps = NetworkCaps(topo) caps.add_cap(CPU, cap=1) opt = from_app(topo, app, NetworkConfig(caps)) opt.solve() assert opt.is_solved() # THE solution is 1-objective because of the maximization flip solution = 1 - opt.get_solved_objective(app)[0] # Use abs(actual - exprected) because floating point errors assert solution == .25 or abs(solution - .25) <= EPSILON solution = 1 - opt.get_solved_objective() assert solution == .25 or abs(solution - .25) <= EPSILON
def pptc(topo): # generate a dummy TM and traffic classes tm = tmgen.exact_tm(topo.num_nodes(), 1) tc = traffic_classes(tm, {u'all': 1}, as_dict=False) # generate all possibe paths res = generate_paths_tc(topo, tc, null_predicate, 10, max_paths=float('inf')) return res
def test_min_latency_app(): """Test a single min latency app""" topo = complete_topology(4) for link in topo.links(): topo.set_resource(link, BANDWIDTH, 1) tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100) appconfig = { 'name': u'te', 'constraints': [(Constraint.ROUTE_ALL, (), {})], 'obj': (Objective.MIN_LATENCY, (), {}), 'resource_cost': { BANDWIDTH: (LINKS, 1, None) } } app = App(pptc, **appconfig) caps = NetworkCaps(topo) caps.add_cap(BANDWIDTH, cap=1) opt = from_app(topo, app, NetworkConfig(caps)) opt.solve() assert opt.is_solved() # norm factor for latency is diameter * n^2 norm = topo.diameter() * 16 # the objective is 1-normalized latency, and latency is 1. # because 1 path with flow fraction of 1. solution = opt.get_solved_objective(app)[0] assert solution == 1 - 1 / norm or abs(solution - (1 - 1 / norm)) <= EPSILON solution = opt.get_solved_objective() assert solution == 1 - 1 / norm or abs(solution - (1 - 1 / norm)) <= EPSILON
def test_mbox_load_balancing_all_tcs(): """Test the middlebox loadbalancing""" topo = complete_topology(4) for n in topo.nodes(): topo.set_resource(n, CPU, 1) topo.set_mbox(n) tcs = [TrafficClass(0, u'classname', s, t, array([1])) for (s, t) in product(topo.nodes(), repeat=2)] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, has_mbox_predicate, modify_func=use_mbox_modifier, cutoff=100) appconfig = { 'name': u'mb_lb', 'constraints': [(Constraint.ROUTE_ALL, (), {})], 'obj': (Objective.MIN_NODE_LOAD, (CPU,), {}), 'resource_cost': {CPU: (MBOXES, 1, None)} } app = App(pptc, **appconfig) caps = NetworkCaps(topo) caps.add_cap(CPU, cap=1) opt = from_app(topo, app, NetworkConfig(caps)) opt.solve() assert opt.is_solved() # THE solution is 1-objective because of the maximization flip solution = 1 - opt.get_solved_objective(app)[0] # Use abs(actual - exprected) because floating point errors assert solution == 1 or abs(solution - 1) <= EPSILON solution = 1 - opt.get_solved_objective() assert solution == 1 or abs(solution - 1) <= EPSILON
def test_maxflow_inapp_caps(cap): """Text maxflow, but use the CAP constraint instead of global network caps""" # Generate a topology: topo = complete_topology(4) for link in topo.links(): topo.set_resource(link, BANDWIDTH, 1) tcs = [TrafficClass(0, u'classname', 0, 2, array([3]))] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100) caps = {link: cap for link in topo.links()} appconfig = { 'name': u'mf', 'constraints': [(Constraint.CAP_LINKS, (BANDWIDTH, caps), {})], 'obj': (Objective.MAX_FLOW, (), {}), 'resource_cost': {BANDWIDTH: (LINKS, 1, None)} } app = App(pptc, **appconfig) opt = from_app(topo, app, NetworkConfig()) opt.solve() assert opt.is_solved() # Ensure that both app objective and global objective are the same # Also, use abs(actual - exprected) because floating point errors solution = opt.get_solved_objective(app)[0] assert solution == cap or abs(solution - cap) <= EPSILON solution = opt.get_solved_objective() assert solution == cap or abs(solution - cap) <= EPSILON
def test_te_app(): """ Test a single traffic engineering app""" topo = complete_topology(4) for link in topo.links(): topo.set_resource(link, BANDWIDTH, 1) tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100) appconfig = { 'name': u'te', 'constraints': [(Constraint.ROUTE_ALL, (), {})], 'obj': (Objective.MIN_LINK_LOAD, (BANDWIDTH,), {}), 'resource_cost': {BANDWIDTH: (LINKS, 1, None)} } app = App(pptc, **appconfig) caps = NetworkCaps(topo) caps.add_cap(BANDWIDTH, cap=1) opt = from_app(topo, app, NetworkConfig(caps)) opt.solve() assert opt.is_solved() # THE solution is 1-objective because of the maximization flip solution = 1 - opt.get_solved_objective(app)[0] # Use abs(actual - exprected) because floating point errors assert solution == .333333 or abs(solution - .33333) <= EPSILON solution = 1 - opt.get_solved_objective() assert solution == .333333 or abs(solution - .33333) <= EPSILON
def test_min_latency_app(): """Test a single min latency app""" topo = complete_topology(4) for link in topo.links(): topo.set_resource(link, BANDWIDTH, 1) tcs = [TrafficClass(0, u'classname', 0, 2, array([1]))] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100) appconfig = { 'name': u'te', 'constraints': [(Constraint.ROUTE_ALL, (), {})], 'obj': (Objective.MIN_LATENCY, (), {}), 'resource_cost': {BANDWIDTH: (LINKS, 1, None)} } app = App(pptc, **appconfig) caps = NetworkCaps(topo) caps.add_cap(BANDWIDTH, cap=1) opt = from_app(topo, app, NetworkConfig(caps)) opt.solve() assert opt.is_solved() # norm factor for latency is diameter * n^2 norm = topo.diameter() * 16 # the objective is 1-normalized latency, and latency is 1. # because 1 path with flow fraction of 1. solution = opt.get_solved_objective(app)[0] assert solution == 1 - 1 / norm or abs(solution - (1 - 1 / norm)) <= EPSILON solution = opt.get_solved_objective() assert solution == 1 - 1 / norm or abs(solution - (1 - 1 / norm)) <= EPSILON
def pptc(): """ An example paths per traffic class """ # get a complete topology topo = complete_topology(5) # generate a dummy TM and traffic classes tm = tmgen.uniform_tm(5, 20, 50, 1) tc = traffic_classes(tm, {u'all': 1}, as_dict=False) # generate all possibe paths res = generate_paths_tc(topo, tc, null_predicate, 10, numpy.inf) return res
def test_shortest_path(): """ Check that we can correctly implement shortest path routing """ # Generate a topology: topo = complete_topology(5) # Generate a single traffic class: # TrafficClass (id, name, source node, destination node) tcs = [TrafficClass(0, u'classname', 0, 2)] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100) # Application configuration appconfig = { 'name': u'minLatencyApp', 'constraints': [(Constraint.ROUTE_ALL, (pptc.tcs(), ), {})], 'obj': (Objective.MIN_LATENCY, (), {}), 'resource_cost': {} } # Create an application based on our config app = App(pptc, **appconfig) # Create and solve an optimization based on the app # No link capacities will just result in a single shortest path opt = from_app(topo, app, NetworkConfig(None)) opt.solve() assert opt.is_solved() paths = opt.get_paths() for pi, p in enumerate(paths.paths(tcs[0])): if list(p.nodes()) == [0, 2]: assert p.flow_fraction() == 1 else: assert p.flow_fraction() == 0 # norm factor for latency is diameter * n^2 norm = topo.diameter() * 25 # the objective is 1-normalized latency, and latency is 1. # because 1 path with flow fraction of 1. solution = opt.get_solved_objective(app)[0] assert solution == 1 - 1 / norm or abs(solution - 1 - 1 / norm) <= EPSILON solution = opt.get_solved_objective() assert solution == 1 - 1 / norm or abs(solution - 1 - 1 / norm) <= EPSILON
def test_shortest_path(): """ Check that we can correctly implement shortest path routing """ # Generate a topology: topo = complete_topology(5) # Generate a single traffic class: # TrafficClass (id, name, source node, destination node) tcs = [TrafficClass(0, u'classname', 0, 2)] # Generate all paths for this traffic class pptc = generate_paths_tc(topo, tcs, null_predicate, cutoff=100) # Application configuration appconfig = { 'name': u'minLatencyApp', 'constraints': [(Constraint.ROUTE_ALL, (pptc.tcs(),), {})], 'obj': (Objective.MIN_LATENCY, (), {}), 'resource_cost': {} } # Create an application based on our config app = App(pptc, **appconfig) # Create and solve an optimization based on the app # No link capacities will just result in a single shortest path opt = from_app(topo, app, NetworkConfig(None)) opt.solve() assert opt.is_solved() paths = opt.get_paths() for pi, p in enumerate(paths.paths(tcs[0])): if list(p.nodes()) == [0, 2]: assert p.flow_fraction() == 1 else: assert p.flow_fraction() == 0 # norm factor for latency is diameter * n^2 norm = topo.diameter() * 25 # the objective is 1-normalized latency, and latency is 1. # because 1 path with flow fraction of 1. solution = opt.get_solved_objective(app)[0] assert solution == 1 - 1 / norm or abs(solution - 1 - 1 / norm) <= EPSILON solution = opt.get_solved_objective() assert solution == 1 - 1 / norm or abs(solution - 1 - 1 / norm) <= EPSILON