Example #1
0
def figures_compare_time_based_features():
    classifiers = utils.get_classifiers()
    feature_sets = [
        [FeatureType.count, FeatureType.heart_rate],
        [FeatureType.count, FeatureType.heart_rate, FeatureType.time],
        [FeatureType.count, FeatureType.heart_rate, FeatureType.cosine],
        [
            FeatureType.count, FeatureType.heart_rate,
            FeatureType.circadian_model
        ]
    ]

    trial_count = 50

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = SleepWakeClassifierSummaryBuilder.build_monte_carlo(
            attributed_classifier, feature_sets, trial_count)

        CurvePlotBuilder.make_roc_sw(classifier_summary, '_time_only')
        CurvePlotBuilder.make_pr_sw(classifier_summary, '_time_only')
        TableBuilder.print_table_sw(classifier_summary)

    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count,
                                           '_time_only_sw_pr')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count,
                                           '_time_only_sw_roc')
Example #2
0
def figures_mesa_three_class():
    classifiers = utils.get_classifiers()

    # Uncomment to just use MLP:
    # classifiers = [AttributedClassifier(name='Neural Net', classifier=MLPClassifier(activation='relu', hidden_layer_sizes=(15, 15, 15),
    #                                                            max_iter=1000, alpha=0.01, solver='lbfgs'))]

    feature_sets = utils.get_base_feature_sets()
    three_class_performance_summaries = []

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = ThreeClassClassifierSummaryBuilder.build_mesa_leave_one_out(
            attributed_classifier, feature_sets)
        PerformancePlotBuilder.make_bland_altman(classifier_summary, '_mesa')
        PerformancePlotBuilder.make_single_threshold_histograms(
            classifier_summary, '_mesa')

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = ThreeClassClassifierSummaryBuilder.build_mesa_all_combined(
            attributed_classifier, feature_sets)
        three_class_performance_dictionary = CurvePlotBuilder.make_three_class_roc(
            classifier_summary, '_mesa')
        classifier_summary.performance_dictionary = three_class_performance_dictionary
        three_class_performance_summaries.append(classifier_summary)
        CurvePlotBuilder.combine_sw_and_three_class_plots(
            attributed_classifier, 1, 'mesa')

    TableBuilder.print_table_three_class(three_class_performance_summaries)
    CurvePlotBuilder.combine_plots_as_grid(classifiers, 1,
                                           '_mesa_three_class_roc')
Example #3
0
def figures_mc_three_class():
    classifiers = utils.get_classifiers()
    feature_sets = utils.get_base_feature_sets()
    trial_count = 20

    three_class_performance_summaries = []
    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = ThreeClassClassifierSummaryBuilder.build_monte_carlo(
            attributed_classifier, feature_sets, trial_count)

        CurvePlotBuilder.make_roc_one_vs_rest(classifier_summary)
        three_class_performance_dictionary = CurvePlotBuilder.make_three_class_roc(
            classifier_summary)

        classifier_summary.performance_dictionary = three_class_performance_dictionary
        three_class_performance_summaries.append(classifier_summary)

    TableBuilder.print_table_three_class(three_class_performance_summaries)
    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count,
                                           '_three_class_roc')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count,
                                           '_ovr_rem_roc')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count,
                                           '_ovr_nrem_roc')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count,
                                           '_ovr_wake_roc')
Example #4
0
def figures_mc_sleep_wake():
    classifiers = utils.get_classifiers()

    feature_sets = utils.get_base_feature_sets()
    trial_count = 20

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = SleepWakeClassifierSummaryBuilder.build_monte_carlo(
            attributed_classifier, feature_sets, trial_count)

        CurvePlotBuilder.make_roc_sw(classifier_summary)
        CurvePlotBuilder.make_pr_sw(classifier_summary)
        TableBuilder.print_table_sw(classifier_summary)

    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count, '_sw_pr')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count, '_sw_roc')
Example #5
0
def figure_leave_one_out_roc_and_pr():
    classifiers = utils.get_classifiers()
    feature_sets = utils.get_base_feature_sets()

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = SleepWakeClassifierSummaryBuilder.build_leave_one_out(
            attributed_classifier, feature_sets)

        CurvePlotBuilder.make_roc_sw(classifier_summary)
        CurvePlotBuilder.make_pr_sw(classifier_summary)
        TableBuilder.print_table_sw(classifier_summary)

    CurvePlotBuilder.combine_plots_as_grid(
        classifiers, len(SubjectBuilder.get_all_subject_ids()), '_sw_pr')
    CurvePlotBuilder.combine_plots_as_grid(
        classifiers, len(SubjectBuilder.get_all_subject_ids()), '_sw_roc')
Example #6
0
def figures_mesa_sleep_wake():
    classifiers = utils.get_classifiers()
    # Uncomment to just use MLP:
    # classifiers = [AttributedClassifier(name='Neural Net',
    #                                     classifier=MLPClassifier(activation='relu', hidden_layer_sizes=(15, 15, 15),
    #                                                              max_iter=1000, alpha=0.01, solver='lbfgs'))]

    feature_sets = utils.get_base_feature_sets()

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = SleepWakeClassifierSummaryBuilder.build_mesa(
            attributed_classifier, feature_sets)
        CurvePlotBuilder.make_roc_sw(classifier_summary, '_mesa')
        CurvePlotBuilder.make_pr_sw(classifier_summary, '_mesa')
        TableBuilder.print_table_sw(classifier_summary)

    CurvePlotBuilder.combine_plots_as_grid(classifiers, 1, '_mesa_sw_pr')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, 1, '_mesa_sw_roc')