Example #1
0
def figures_compare_time_based_features():
    classifiers = utils.get_classifiers()
    feature_sets = [
        [FeatureType.count, FeatureType.heart_rate],
        [FeatureType.count, FeatureType.heart_rate, FeatureType.time],
        [FeatureType.count, FeatureType.heart_rate, FeatureType.cosine],
        [
            FeatureType.count, FeatureType.heart_rate,
            FeatureType.circadian_model
        ]
    ]

    trial_count = 50

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = SleepWakeClassifierSummaryBuilder.build_monte_carlo(
            attributed_classifier, feature_sets, trial_count)

        CurvePlotBuilder.make_roc_sw(classifier_summary, '_time_only')
        CurvePlotBuilder.make_pr_sw(classifier_summary, '_time_only')
        TableBuilder.print_table_sw(classifier_summary)

    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count,
                                           '_time_only_sw_pr')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count,
                                           '_time_only_sw_roc')
    def test_make_pr_plot(self, mock_build_pr, mock_tidy_plot, mock_set_labels,
                          mock_plt):
        performance_dictionary = {
            tuple([FeatureType.count, FeatureType.heart_rate]):
            ['placeholder', 'for', 'raw', 'performances'],
            tuple([FeatureType.count]):
            ['placeholder', 'for', 'raw', 'performances']
        }

        attributed_classifier = AttributedClassifier(
            name="Logistic Regression", classifier=LogisticRegression())
        classifier_summary = ClassifierSummary(
            attributed_classifier=attributed_classifier,
            performance_dictionary=performance_dictionary)

        CurvePlotBuilder.make_pr_sw(classifier_summary)

        mock_build_pr.assert_called_once_with(classifier_summary)
        mock_tidy_plot.assert_called_once_with()
        mock_set_labels.assert_called_once_with(
            attributed_classifier, 'Fraction of wake scored as wake',
            'Fraction of predicted wake correct', (0.5, 1.0))

        mock_plt.savefig.assert_called_once_with(
            str(
                Constants.FIGURE_FILE_PATH.joinpath(
                    attributed_classifier.name + '_' + str(4) +
                    '__sw_pr.png')))
        mock_plt.close.assert_called_once_with()
Example #3
0
def figures_mc_sleep_wake():
    classifiers = utils.get_classifiers()

    feature_sets = utils.get_base_feature_sets()
    trial_count = 20

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = SleepWakeClassifierSummaryBuilder.build_monte_carlo(
            attributed_classifier, feature_sets, trial_count)

        CurvePlotBuilder.make_roc_sw(classifier_summary)
        CurvePlotBuilder.make_pr_sw(classifier_summary)
        TableBuilder.print_table_sw(classifier_summary)

    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count, '_sw_pr')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, trial_count, '_sw_roc')
Example #4
0
def figure_leave_one_out_roc_and_pr():
    classifiers = utils.get_classifiers()
    feature_sets = utils.get_base_feature_sets()

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = SleepWakeClassifierSummaryBuilder.build_leave_one_out(
            attributed_classifier, feature_sets)

        CurvePlotBuilder.make_roc_sw(classifier_summary)
        CurvePlotBuilder.make_pr_sw(classifier_summary)
        TableBuilder.print_table_sw(classifier_summary)

    CurvePlotBuilder.combine_plots_as_grid(
        classifiers, len(SubjectBuilder.get_all_subject_ids()), '_sw_pr')
    CurvePlotBuilder.combine_plots_as_grid(
        classifiers, len(SubjectBuilder.get_all_subject_ids()), '_sw_roc')
Example #5
0
def figures_mesa_sleep_wake():
    classifiers = utils.get_classifiers()
    # Uncomment to just use MLP:
    # classifiers = [AttributedClassifier(name='Neural Net',
    #                                     classifier=MLPClassifier(activation='relu', hidden_layer_sizes=(15, 15, 15),
    #                                                              max_iter=1000, alpha=0.01, solver='lbfgs'))]

    feature_sets = utils.get_base_feature_sets()

    for attributed_classifier in classifiers:
        if Constants.VERBOSE:
            print('Running ' + attributed_classifier.name + '...')
        classifier_summary = SleepWakeClassifierSummaryBuilder.build_mesa(
            attributed_classifier, feature_sets)
        CurvePlotBuilder.make_roc_sw(classifier_summary, '_mesa')
        CurvePlotBuilder.make_pr_sw(classifier_summary, '_mesa')
        TableBuilder.print_table_sw(classifier_summary)

    CurvePlotBuilder.combine_plots_as_grid(classifiers, 1, '_mesa_sw_pr')
    CurvePlotBuilder.combine_plots_as_grid(classifiers, 1, '_mesa_sw_roc')