Example #1
0
def binary_search_overshoot(
        ys, save_filename="models/pstl_overshoot_binary_search.npy"):
    ϵ_list = []
    N = ys.shape[0]
    for i in range(N):
        y = torch.as_tensor(ys[i:i + 1, :]).float().unsqueeze(-1)
        s = stlcg.Expression('s', y)
        ϵL = torch.as_tensor(np.zeros([1, 1, 1])).float().requires_grad_(True)
        ϵU = torch.as_tensor(2 *
                             np.ones([1, 1, 1])).float().requires_grad_(True)
        ϵ = torch.as_tensor(np.ones([1, 1, 1])).float().requires_grad_(True)
        ϕL = stlcg.Always(subformula=(s < ϵL))
        ϕU = stlcg.Always(subformula=(s < ϵU))
        ϕ = stlcg.Always(subformula=(s < ϵ))
        while torch.abs(ϕU.subformula.val - ϕL.subformula.val) > 5 * 1E-3:
            ϵ = 0.5 * (ϕU.subformula.val + ϕL.subformula.val)
            ϕ.subformula.val = ϵ
            r = ϕ.robustness(s).squeeze()

            if r > 0:
                ϕU.subformula.val = ϵ
            else:
                ϕL.subformula.val = ϵ
        ϵ_list.append(ϵ.squeeze().detach().numpy())
    if save_filename is None:
        return np.stack(ϵ_list)
    np.save(save_filename, np.stack(ϵ_list))
Example #2
0
def stlcg_overshoot(ys, save_filename="models/pstl_overshoot_stlcg.npy"):
    N = ys.shape[0]
    max_epoch = 1000
    y = torch.as_tensor(ys).float().unsqueeze(-1)
    s = stlcg.Expression('s', y)
    ϵ = torch.as_tensor(np.zeros([N, 1, 1])).float().requires_grad_(True)
    ϕ = stlcg.Always(subformula=(s < ϵ))
    for epoch in range(max_epoch):

        loss = torch.relu(-ϕ.robustness(s).squeeze()).sum()
        loss.backward()

        with torch.no_grad():
            ϵ -= 0.005 * ϵ.grad
        if loss == 0:
            break
        ϵ.grad.zero_()

    if save_filename is None:
        return ϵ.squeeze().cpu().detach().numpy()
    np.save(save_filename, ϵ.squeeze().cpu().detach().numpy())
Example #3
0
def binary_search_settling_vectorize(ys):
    N = ys.shape[0]
    y = torch.as_tensor(ys).float().unsqueeze(-1)
    s = stlcg.Expression('s', torch.abs(y - 1))
    ϵL = torch.as_tensor(np.zeros([N, 1, 1])).float().requires_grad_(True)
    ϵU = torch.as_tensor(np.ones([N, 1, 1])).float().requires_grad_(True)
    ϵ = torch.as_tensor(np.ones([N, 1, 1])).float().requires_grad_(True)
    ϕL = stlcg.Always(subformula=(s < ϵL), interval=[50, 100])
    ϕU = stlcg.Always(subformula=(s < ϵU), interval=[50, 100])
    ϕ = stlcg.Always(subformula=(s < ϵ), interval=[50, 100])
    while torch.abs(ϕU.subformula.val - ϕL.subformula.val).max() > 5 * 1E-3:
        ϵ = 0.5 * (ϕU.subformula.val + ϕL.subformula.val)
        ϕ.subformula.val = ϵ
        r = ϕ.robustness(s)
        ϕU.subformula.val = torch.where(
            torch.abs(ϕU.subformula.val - ϕL.subformula.val) > 5 * 1E-3,
            torch.where(r > 0, ϵ, ϕU.subformula.val), ϕU.subformula.val)
        ϕL.subformula.val = torch.where(
            torch.abs(ϕU.subformula.val - ϕL.subformula.val) > 5 * 1E-3,
            torch.where(r <= 0, ϵ, ϕL.subformula.val), ϕL.subformula.val)
    return ϵ.squeeze().detach().numpy()
Example #4
0
def stlcg_settling(ys, save_filename="models/pstl_settling_stlcg.npy"):
    max_epoch = 1000
    N = ys.shape[0]
    y = torch.as_tensor(ys).float().unsqueeze(-1)
    s = stlcg.Expression('s', torch.abs(y - 1))
    ϵ = torch.as_tensor(np.zeros([N, 1, 1])).float().requires_grad_(True)
    ϕ = stlcg.Always(subformula=(s < ϵ), interval=[50, 100])

    for epoch in range(max_epoch):

        loss = torch.relu(-ϕ.robustness(s).squeeze()).sum()
        loss.backward()

        with torch.no_grad():
            ϵ -= 0.005 * ϵ.grad

        ϵ.grad.zero_()
        if loss == 0:
            break
    if save_filename is None:
        return ϵ.squeeze().detach().numpy()
    np.save(save_filename, ϵ.squeeze().detach().numpy())
Example #5
0
# will be overridden later

p = sample_environment_parameters(case, 1)[0]
env = generate_env_from_parameters(case,
                                   p,
                                   carlength=params["lr"] + params["lf"])

# initial conditions and stl formula
if case == "coverage":
    lower = torch.tensor(
        [env.initial.lower[0], env.initial.lower[1], np.pi / 4, 0])
    upper = torch.tensor(
        [env.initial.upper[0], env.initial.upper[1], 3 * np.pi / 4, 2])

    in_end_goal = inside_circle(env.final, "distance to final")
    stop_in_end_goal = in_end_goal & (stlcg.Expression('speed') < 0.5)
    end_goal = stlcg.Eventually(subformula=stlcg.Always(
        subformula=stop_in_end_goal))
    in_coverage = inside_circle(env.covers[0], "distance to coverage") & (
        stlcg.Expression('speed') < 2.0)
    coverage = stlcg.Eventually(
        subformula=stlcg.Always(in_coverage, interval=[0, 8]))
    avoid_obs = always_outside_circle(env.obs[0], "distance to obstacle")
    formula = stlcg.Until(subformula1=coverage,
                          subformula2=end_goal) & avoid_obs
    formula_input_func = lambda s, env: get_formula_input_coverage(
        s, env, device, backwards=False)
    xlim = [-6, 16]
    ylim = [-6, 16]

elif case == "drive":