def binary_search_overshoot( ys, save_filename="models/pstl_overshoot_binary_search.npy"): ϵ_list = [] N = ys.shape[0] for i in range(N): y = torch.as_tensor(ys[i:i + 1, :]).float().unsqueeze(-1) s = stlcg.Expression('s', y) ϵL = torch.as_tensor(np.zeros([1, 1, 1])).float().requires_grad_(True) ϵU = torch.as_tensor(2 * np.ones([1, 1, 1])).float().requires_grad_(True) ϵ = torch.as_tensor(np.ones([1, 1, 1])).float().requires_grad_(True) ϕL = stlcg.Always(subformula=(s < ϵL)) ϕU = stlcg.Always(subformula=(s < ϵU)) ϕ = stlcg.Always(subformula=(s < ϵ)) while torch.abs(ϕU.subformula.val - ϕL.subformula.val) > 5 * 1E-3: ϵ = 0.5 * (ϕU.subformula.val + ϕL.subformula.val) ϕ.subformula.val = ϵ r = ϕ.robustness(s).squeeze() if r > 0: ϕU.subformula.val = ϵ else: ϕL.subformula.val = ϵ ϵ_list.append(ϵ.squeeze().detach().numpy()) if save_filename is None: return np.stack(ϵ_list) np.save(save_filename, np.stack(ϵ_list))
def stlcg_overshoot(ys, save_filename="models/pstl_overshoot_stlcg.npy"): N = ys.shape[0] max_epoch = 1000 y = torch.as_tensor(ys).float().unsqueeze(-1) s = stlcg.Expression('s', y) ϵ = torch.as_tensor(np.zeros([N, 1, 1])).float().requires_grad_(True) ϕ = stlcg.Always(subformula=(s < ϵ)) for epoch in range(max_epoch): loss = torch.relu(-ϕ.robustness(s).squeeze()).sum() loss.backward() with torch.no_grad(): ϵ -= 0.005 * ϵ.grad if loss == 0: break ϵ.grad.zero_() if save_filename is None: return ϵ.squeeze().cpu().detach().numpy() np.save(save_filename, ϵ.squeeze().cpu().detach().numpy())
def binary_search_settling_vectorize(ys): N = ys.shape[0] y = torch.as_tensor(ys).float().unsqueeze(-1) s = stlcg.Expression('s', torch.abs(y - 1)) ϵL = torch.as_tensor(np.zeros([N, 1, 1])).float().requires_grad_(True) ϵU = torch.as_tensor(np.ones([N, 1, 1])).float().requires_grad_(True) ϵ = torch.as_tensor(np.ones([N, 1, 1])).float().requires_grad_(True) ϕL = stlcg.Always(subformula=(s < ϵL), interval=[50, 100]) ϕU = stlcg.Always(subformula=(s < ϵU), interval=[50, 100]) ϕ = stlcg.Always(subformula=(s < ϵ), interval=[50, 100]) while torch.abs(ϕU.subformula.val - ϕL.subformula.val).max() > 5 * 1E-3: ϵ = 0.5 * (ϕU.subformula.val + ϕL.subformula.val) ϕ.subformula.val = ϵ r = ϕ.robustness(s) ϕU.subformula.val = torch.where( torch.abs(ϕU.subformula.val - ϕL.subformula.val) > 5 * 1E-3, torch.where(r > 0, ϵ, ϕU.subformula.val), ϕU.subformula.val) ϕL.subformula.val = torch.where( torch.abs(ϕU.subformula.val - ϕL.subformula.val) > 5 * 1E-3, torch.where(r <= 0, ϵ, ϕL.subformula.val), ϕL.subformula.val) return ϵ.squeeze().detach().numpy()
def stlcg_settling(ys, save_filename="models/pstl_settling_stlcg.npy"): max_epoch = 1000 N = ys.shape[0] y = torch.as_tensor(ys).float().unsqueeze(-1) s = stlcg.Expression('s', torch.abs(y - 1)) ϵ = torch.as_tensor(np.zeros([N, 1, 1])).float().requires_grad_(True) ϕ = stlcg.Always(subformula=(s < ϵ), interval=[50, 100]) for epoch in range(max_epoch): loss = torch.relu(-ϕ.robustness(s).squeeze()).sum() loss.backward() with torch.no_grad(): ϵ -= 0.005 * ϵ.grad ϵ.grad.zero_() if loss == 0: break if save_filename is None: return ϵ.squeeze().detach().numpy() np.save(save_filename, ϵ.squeeze().detach().numpy())
# will be overridden later p = sample_environment_parameters(case, 1)[0] env = generate_env_from_parameters(case, p, carlength=params["lr"] + params["lf"]) # initial conditions and stl formula if case == "coverage": lower = torch.tensor( [env.initial.lower[0], env.initial.lower[1], np.pi / 4, 0]) upper = torch.tensor( [env.initial.upper[0], env.initial.upper[1], 3 * np.pi / 4, 2]) in_end_goal = inside_circle(env.final, "distance to final") stop_in_end_goal = in_end_goal & (stlcg.Expression('speed') < 0.5) end_goal = stlcg.Eventually(subformula=stlcg.Always( subformula=stop_in_end_goal)) in_coverage = inside_circle(env.covers[0], "distance to coverage") & ( stlcg.Expression('speed') < 2.0) coverage = stlcg.Eventually( subformula=stlcg.Always(in_coverage, interval=[0, 8])) avoid_obs = always_outside_circle(env.obs[0], "distance to obstacle") formula = stlcg.Until(subformula1=coverage, subformula2=end_goal) & avoid_obs formula_input_func = lambda s, env: get_formula_input_coverage( s, env, device, backwards=False) xlim = [-6, 16] ylim = [-6, 16] elif case == "drive":