Example #1
0
def test_is_extended_real():
    x = Symbol('x', extended_real=True)
    y = Symbol('y', extended_real=False)
    z = Symbol('z')
    assert is_extended_real(x)
    assert not is_extended_real(y)
    assert is_extended_real(z) is None
    assert is_extended_real(z, Q.extended_real(z))
Example #2
0
def test_is_eq():
    # test assumptions
    assert is_eq(x, y, Q.infinite(x) & Q.finite(y)) is False
    assert is_eq(
        x, y,
        Q.infinite(x) & Q.infinite(y) & Q.extended_real(x)
        & ~Q.extended_real(y)) is False
    assert is_eq(
        x, y,
        Q.infinite(x) & Q.infinite(y) & Q.extended_positive(x)
        & Q.extended_negative(y)) is False

    assert is_eq(x + I, y + I, Q.infinite(x) & Q.finite(y)) is False
    assert is_eq(1 + x * I, 1 + y * I, Q.infinite(x) & Q.finite(y)) is False

    assert is_eq(x, S(0), assumptions=Q.zero(x))
    assert is_eq(x, S(0), assumptions=~Q.zero(x)) is False
    assert is_eq(x, S(0), assumptions=Q.nonzero(x)) is False
    assert is_neq(x, S(0), assumptions=Q.zero(x)) is False
    assert is_neq(x, S(0), assumptions=~Q.zero(x))
    assert is_neq(x, S(0), assumptions=Q.nonzero(x))

    # test registration
    class PowTest(Expr):
        def __new__(cls, base, exp):
            return Basic.__new__(cls, _sympify(base), _sympify(exp))

    @dispatch(PowTest, PowTest)
    def _eval_is_eq(lhs, rhs):
        if type(lhs) == PowTest and type(rhs) == PowTest:
            return fuzzy_and([
                is_eq(lhs.args[0], rhs.args[0]),
                is_eq(lhs.args[1], rhs.args[1])
            ])

    assert is_eq(PowTest(3, 4), PowTest(3, 4))
    assert is_eq(PowTest(3, 4), _sympify(4)) is None
    assert is_neq(PowTest(3, 4), PowTest(3, 7))