def refine_MatMul(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> expr = X * X.T >>> print(expr) X*X.T >>> with assuming(Q.orthogonal(X)): ... print(refine(expr)) I """ newargs = [] exprargs = [] for args in expr.args: if args.is_Matrix: exprargs.append(args) else: newargs.append(args) last = exprargs[0] for arg in exprargs[1:]: if arg == last.T and ask(Q.orthogonal(arg), assumptions): last = Identity(arg.shape[0]) elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions): last = Identity(arg.shape[0]) else: newargs.append(last) last = arg newargs.append(last) return MatMul(*newargs)
def test_dft(): n, i, j = symbols('n i j') assert DFT(4).shape == (4, 4) assert ask(Q.unitary(DFT(4))) assert Abs(simplify(det(Matrix(DFT(4))))) == 1 assert DFT(n) * IDFT(n) == Identity(n) assert DFT(n)[i, j] == exp(-2 * S.Pi * I / n)**(i * j) / sqrt(n)
def refine_Inverse(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> X.I X^-1 >>> with assuming(Q.orthogonal(X)): ... print(refine(X.I)) X.T """ if ask(Q.orthogonal(expr), assumptions): return expr.arg.T elif ask(Q.unitary(expr), assumptions): return expr.arg.conjugate() elif ask(Q.singular(expr), assumptions): raise ValueError("Inverse of singular matrix %s" % expr.arg) return expr
def refine_Inverse(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> X.I X**(-1) >>> with assuming(Q.orthogonal(X)): ... print(refine(X.I)) X.T """ if ask(Q.orthogonal(expr), assumptions): return expr.arg.T elif ask(Q.unitary(expr), assumptions): return expr.arg.conjugate() elif ask(Q.singular(expr), assumptions): raise ValueError("Inverse of singular matrix %s" % expr.arg) return expr
def test_unitary(): _test_orthogonal_unitary(Q.unitary) assert ask(Q.unitary(X), Q.orthogonal(X))
def get_known_facts(x=None): """ Facts between unary predicates. Parameters ========== x : Symbol, optional Placeholder symbol for unary facts. Default is ``Symbol('x')``. Returns ======= fact : Known facts in conjugated normal form. """ if x is None: x = Symbol('x') fact = And( # primitive predicates for extended real exclude each other. Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x), Q.positive(x), Q.positive_infinite(x)), # build complex plane Exclusive(Q.real(x), Q.imaginary(x)), Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)), # other subsets of complex Exclusive(Q.transcendental(x), Q.algebraic(x)), Equivalent(Q.real(x), Q.rational(x) | Q.irrational(x)), Exclusive(Q.irrational(x), Q.rational(x)), Implies(Q.rational(x), Q.algebraic(x)), # integers Exclusive(Q.even(x), Q.odd(x)), Implies(Q.integer(x), Q.rational(x)), Implies(Q.zero(x), Q.even(x)), Exclusive(Q.composite(x), Q.prime(x)), Implies(Q.composite(x) | Q.prime(x), Q.integer(x) & Q.positive(x)), Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)), # hermitian and antihermitian Implies(Q.real(x), Q.hermitian(x)), Implies(Q.imaginary(x), Q.antihermitian(x)), Implies(Q.zero(x), Q.hermitian(x) | Q.antihermitian(x)), # define finity and infinity, and build extended real line Exclusive(Q.infinite(x), Q.finite(x)), Implies(Q.complex(x), Q.finite(x)), Implies( Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)), # commutativity Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)), # matrices Implies(Q.orthogonal(x), Q.positive_definite(x)), Implies(Q.orthogonal(x), Q.unitary(x)), Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)), Implies(Q.unitary(x), Q.normal(x)), Implies(Q.unitary(x), Q.invertible(x)), Implies(Q.normal(x), Q.square(x)), Implies(Q.diagonal(x), Q.normal(x)), Implies(Q.positive_definite(x), Q.invertible(x)), Implies(Q.diagonal(x), Q.upper_triangular(x)), Implies(Q.diagonal(x), Q.lower_triangular(x)), Implies(Q.lower_triangular(x), Q.triangular(x)), Implies(Q.upper_triangular(x), Q.triangular(x)), Implies(Q.triangular(x), Q.upper_triangular(x) | Q.lower_triangular(x)), Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)), Implies(Q.diagonal(x), Q.symmetric(x)), Implies(Q.unit_triangular(x), Q.triangular(x)), Implies(Q.invertible(x), Q.fullrank(x)), Implies(Q.invertible(x), Q.square(x)), Implies(Q.symmetric(x), Q.square(x)), Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)), Equivalent(Q.invertible(x), ~Q.singular(x)), Implies(Q.integer_elements(x), Q.real_elements(x)), Implies(Q.real_elements(x), Q.complex_elements(x)), ) return fact