Example #1
0
def refine_MatMul(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> expr = X * X.T
    >>> print(expr)
    X*X.T
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(expr))
    I
    """
    newargs = []
    exprargs = []

    for args in expr.args:
        if args.is_Matrix:
            exprargs.append(args)
        else:
            newargs.append(args)

    last = exprargs[0]
    for arg in exprargs[1:]:
        if arg == last.T and ask(Q.orthogonal(arg), assumptions):
            last = Identity(arg.shape[0])
        elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
            last = Identity(arg.shape[0])
        else:
            newargs.append(last)
            last = arg
    newargs.append(last)

    return MatMul(*newargs)
Example #2
0
def test_dft():
    n, i, j = symbols('n i j')
    assert DFT(4).shape == (4, 4)
    assert ask(Q.unitary(DFT(4)))
    assert Abs(simplify(det(Matrix(DFT(4))))) == 1
    assert DFT(n) * IDFT(n) == Identity(n)
    assert DFT(n)[i, j] == exp(-2 * S.Pi * I / n)**(i * j) / sqrt(n)
Example #3
0
def refine_Inverse(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.I
    X^-1
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(X.I))
    X.T
    """
    if ask(Q.orthogonal(expr), assumptions):
        return expr.arg.T
    elif ask(Q.unitary(expr), assumptions):
        return expr.arg.conjugate()
    elif ask(Q.singular(expr), assumptions):
        raise ValueError("Inverse of singular matrix %s" % expr.arg)

    return expr
Example #4
0
def refine_Inverse(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.I
    X**(-1)
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(X.I))
    X.T
    """
    if ask(Q.orthogonal(expr), assumptions):
        return expr.arg.T
    elif ask(Q.unitary(expr), assumptions):
        return expr.arg.conjugate()
    elif ask(Q.singular(expr), assumptions):
        raise ValueError("Inverse of singular matrix %s" % expr.arg)

    return expr
Example #5
0
def test_unitary():
    _test_orthogonal_unitary(Q.unitary)
    assert ask(Q.unitary(X), Q.orthogonal(X))
Example #6
0
def get_known_facts(x=None):
    """
    Facts between unary predicates.

    Parameters
    ==========

    x : Symbol, optional
        Placeholder symbol for unary facts. Default is ``Symbol('x')``.

    Returns
    =======

    fact : Known facts in conjugated normal form.

    """
    if x is None:
        x = Symbol('x')

    fact = And(
        # primitive predicates for extended real exclude each other.
        Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x),
                  Q.positive(x), Q.positive_infinite(x)),

        # build complex plane
        Exclusive(Q.real(x), Q.imaginary(x)),
        Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)),

        # other subsets of complex
        Exclusive(Q.transcendental(x), Q.algebraic(x)),
        Equivalent(Q.real(x),
                   Q.rational(x) | Q.irrational(x)),
        Exclusive(Q.irrational(x), Q.rational(x)),
        Implies(Q.rational(x), Q.algebraic(x)),

        # integers
        Exclusive(Q.even(x), Q.odd(x)),
        Implies(Q.integer(x), Q.rational(x)),
        Implies(Q.zero(x), Q.even(x)),
        Exclusive(Q.composite(x), Q.prime(x)),
        Implies(Q.composite(x) | Q.prime(x),
                Q.integer(x) & Q.positive(x)),
        Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)),

        # hermitian and antihermitian
        Implies(Q.real(x), Q.hermitian(x)),
        Implies(Q.imaginary(x), Q.antihermitian(x)),
        Implies(Q.zero(x),
                Q.hermitian(x) | Q.antihermitian(x)),

        # define finity and infinity, and build extended real line
        Exclusive(Q.infinite(x), Q.finite(x)),
        Implies(Q.complex(x), Q.finite(x)),
        Implies(
            Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)),

        # commutativity
        Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)),

        # matrices
        Implies(Q.orthogonal(x), Q.positive_definite(x)),
        Implies(Q.orthogonal(x), Q.unitary(x)),
        Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)),
        Implies(Q.unitary(x), Q.normal(x)),
        Implies(Q.unitary(x), Q.invertible(x)),
        Implies(Q.normal(x), Q.square(x)),
        Implies(Q.diagonal(x), Q.normal(x)),
        Implies(Q.positive_definite(x), Q.invertible(x)),
        Implies(Q.diagonal(x), Q.upper_triangular(x)),
        Implies(Q.diagonal(x), Q.lower_triangular(x)),
        Implies(Q.lower_triangular(x), Q.triangular(x)),
        Implies(Q.upper_triangular(x), Q.triangular(x)),
        Implies(Q.triangular(x),
                Q.upper_triangular(x) | Q.lower_triangular(x)),
        Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)),
        Implies(Q.diagonal(x), Q.symmetric(x)),
        Implies(Q.unit_triangular(x), Q.triangular(x)),
        Implies(Q.invertible(x), Q.fullrank(x)),
        Implies(Q.invertible(x), Q.square(x)),
        Implies(Q.symmetric(x), Q.square(x)),
        Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)),
        Equivalent(Q.invertible(x), ~Q.singular(x)),
        Implies(Q.integer_elements(x), Q.real_elements(x)),
        Implies(Q.real_elements(x), Q.complex_elements(x)),
    )
    return fact