Example #1
0
    def set_vel(self, frame, value):
        """Sets the velocity Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        value : Vector
            The vector value of this point's velocity in the frame
        frame : ReferenceFrame
            The frame in which this point's velocity is defined

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_vel(N, 10 * N.x)
        >>> p1.vel(N)
        10*N.x

        """

        value = _check_vector(value)
        _check_frame(frame)
        self._vel_dict.update({frame: value})
Example #2
0
    def acc(self, frame):
        """The acceleration Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which the returned acceleration vector will be defined in

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        _check_frame(frame)
        if not (frame in self._acc_dict):
            if self._vel_dict[frame] != 0:
                return (self._vel_dict[frame]).dt(frame)
            else:
                return 0
        return self._acc_dict[frame]
Example #3
0
    def vel(self, frame):
        """The velocity Vector of this Point in the ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which the returned velocity vector will be defined in

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_vel(N, 10 * N.x)
        >>> p1.vel(N)
        10*N.x

        """

        _check_frame(frame)
        if not (frame in self._vel_dict):
            raise ValueError('Velocity of point ' + self.name + ' has not been'
                             ' defined in ReferenceFrame ' + frame.name)
        return self._vel_dict[frame]
Example #4
0
    def set_acc(self, frame, value):
        """Used to set the acceleration of this Point in a ReferenceFrame.

        Parameters
        ==========

        value : Vector
            The vector value of this point's acceleration in the frame
        frame : ReferenceFrame
            The frame in which this point's acceleration is defined

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        value = _check_vector(value)
        _check_frame(frame)
        self._acc_dict.update({frame: value})
Example #5
0
    def set_vel(self, frame, value):
        """Sets the velocity Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        value : Vector
            The vector value of this point's velocity in the frame
        frame : ReferenceFrame
            The frame in which this point's velocity is defined

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_vel(N, 10 * N.x)
        >>> p1.vel(N)
        10*N.x

        """

        value = _check_vector(value)
        _check_frame(frame)
        self._vel_dict.update({frame: value})
Example #6
0
    def vel(self, frame):
        """The velocity Vector of this Point in the ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which the returned velocity vector will be defined in

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_vel(N, 10 * N.x)
        >>> p1.vel(N)
        10*N.x

        """

        _check_frame(frame)
        if not (frame in self._vel_dict):
            raise ValueError('Velocity of point ' + self.name + ' has not been'
                             ' defined in ReferenceFrame ' + frame.name)
        return self._vel_dict[frame]
Example #7
0
    def set_acc(self, frame, value):
        """Used to set the acceleration of this Point in a ReferenceFrame.

        Parameters
        ==========

        value : Vector
            The vector value of this point's acceleration in the frame
        frame : ReferenceFrame
            The frame in which this point's acceleration is defined

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        value = _check_vector(value)
        _check_frame(frame)
        self._acc_dict.update({frame: value})
Example #8
0
    def acc(self, frame):
        """The acceleration Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which the returned acceleration vector will be defined in

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        _check_frame(frame)
        if not (frame in self._acc_dict):
            if self._vel_dict[frame] != 0:
                return (self._vel_dict[frame]).dt(frame)
            else:
                return 0
        return self._acc_dict[frame]
Example #9
0
    def a1pt_theory(self, otherpoint, outframe, interframe):
        """Sets the acceleration of this point with the 1-point theory.

        The 1-point theory for point acceleration looks like this:

        ^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B
        x r^OP) + 2 ^N omega^B x ^B v^P

        where O is a point fixed in B, P is a point moving in B, and B is
        rotating in frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 1-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's acceleration defined in (N)
        fixedframe : ReferenceFrame
            The intermediate frame in this calculation (B)

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> from sympy.physics.mechanics import Vector, dynamicsymbols
        >>> q = dynamicsymbols('q')
        >>> q2 = dynamicsymbols('q2')
        >>> qd = dynamicsymbols('q', 1)
        >>> q2d = dynamicsymbols('q2', 1)
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B.set_ang_vel(N, 5 * B.y)
        >>> O = Point('O')
        >>> P = O.locatenew('P', q * B.x)
        >>> P.set_vel(B, qd * B.x + q2d * B.y)
        >>> O.set_vel(N, 0)
        >>> P.a1pt_theory(O, N, B)
        (-25*q + q'')*B.x + q2''*B.y - 10*q'*B.z

        """

        _check_frame(outframe)
        _check_frame(interframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        v = self.vel(interframe)
        a1 = otherpoint.acc(outframe)
        a2 = self.acc(interframe)
        omega = interframe.ang_vel_in(outframe)
        alpha = interframe.ang_acc_in(outframe)
        self.set_acc(
            outframe, a2 + 2 * (omega ^ v) + a1 + (alpha ^ dist) +
            (omega ^ (omega ^ dist)))
        return self.acc(outframe)
Example #10
0
    def a1pt_theory(self, otherpoint, outframe, interframe):
        """Sets the acceleration of this point with the 1-point theory.

        The 1-point theory for point acceleration looks like this:

        ^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B
        x r^OP) + 2 ^N omega^B x ^B v^P

        where O is a point fixed in B, P is a point moving in B, and B is
        rotating in frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 1-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's acceleration defined in (N)
        fixedframe : ReferenceFrame
            The intermediate frame in this calculation (B)

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> from sympy.physics.mechanics import Vector, dynamicsymbols
        >>> q = dynamicsymbols('q')
        >>> q2 = dynamicsymbols('q2')
        >>> qd = dynamicsymbols('q', 1)
        >>> q2d = dynamicsymbols('q2', 1)
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B.set_ang_vel(N, 5 * B.y)
        >>> O = Point('O')
        >>> P = O.locatenew('P', q * B.x)
        >>> P.set_vel(B, qd * B.x + q2d * B.y)
        >>> O.set_vel(N, 0)
        >>> P.a1pt_theory(O, N, B)
        (-25*q + q'')*B.x + q2''*B.y - 10*q'*B.z

        """

        _check_frame(outframe)
        _check_frame(interframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        v = self.vel(interframe)
        a1 = otherpoint.acc(outframe)
        a2 = self.acc(interframe)
        omega = interframe.ang_vel_in(outframe)
        alpha = interframe.ang_acc_in(outframe)
        self.set_acc(outframe, a2 + 2 * (omega ^ v) + a1 + (alpha ^ dist) +
                (omega ^ (omega ^ dist)))
        return self.acc(outframe)
Example #11
0
    def v1pt_theory(self, otherpoint, outframe, interframe):
        """Sets the velocity of this point with the 1-point theory.

        The 1-point theory for point velocity looks like this:

        ^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP

        where O is a point fixed in B, P is a point moving in B, and B is
        rotating in frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 2-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's velocity defined in (N)
        interframe : ReferenceFrame
            The intermediate frame in this calculation (B)

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> from sympy.physics.mechanics import Vector, dynamicsymbols
        >>> q = dynamicsymbols('q')
        >>> q2 = dynamicsymbols('q2')
        >>> qd = dynamicsymbols('q', 1)
        >>> q2d = dynamicsymbols('q2', 1)
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B.set_ang_vel(N, 5 * B.y)
        >>> O = Point('O')
        >>> P = O.locatenew('P', q * B.x)
        >>> P.set_vel(B, qd * B.x + q2d * B.y)
        >>> O.set_vel(N, 0)
        >>> P.v1pt_theory(O, N, B)
        q'*B.x + q2'*B.y - 5*q*B.z

        """

        _check_frame(outframe)
        _check_frame(interframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        v1 = self.vel(interframe)
        v2 = otherpoint.vel(outframe)
        omega = interframe.ang_vel_in(outframe)
        self.set_vel(outframe, v1 + v2 + (omega ^ dist))
        return self.vel(outframe)
Example #12
0
    def v1pt_theory(self, otherpoint, outframe, interframe):
        """Sets the velocity of this point with the 1-point theory.

        The 1-point theory for point velocity looks like this:

        ^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP

        where O is a point fixed in B, P is a point moving in B, and B is
        rotating in frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 2-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's velocity defined in (N)
        interframe : ReferenceFrame
            The intermediate frame in this calculation (B)

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> from sympy.physics.mechanics import Vector, dynamicsymbols
        >>> q = dynamicsymbols('q')
        >>> q2 = dynamicsymbols('q2')
        >>> qd = dynamicsymbols('q', 1)
        >>> q2d = dynamicsymbols('q2', 1)
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B.set_ang_vel(N, 5 * B.y)
        >>> O = Point('O')
        >>> P = O.locatenew('P', q * B.x)
        >>> P.set_vel(B, qd * B.x + q2d * B.y)
        >>> O.set_vel(N, 0)
        >>> P.v1pt_theory(O, N, B)
        q'*B.x + q2'*B.y - 5*q*B.z

        """

        _check_frame(outframe)
        _check_frame(interframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        v1 = self.vel(interframe)
        v2 = otherpoint.vel(outframe)
        omega = interframe.ang_vel_in(outframe)
        self.set_vel(outframe, v1 + v2 + (omega ^ dist))
        return self.vel(outframe)
Example #13
0
    def a2pt_theory(self, otherpoint, outframe, fixedframe):
        """Sets the acceleration of this point with the 2-point theory.

        The 2-point theory for point acceleration looks like this:

        ^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP)

        where O and P are both points fixed in frame B, which is rotating in
        frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 2-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's acceleration defined in (N)
        fixedframe : ReferenceFrame
            The frame in which both points are fixed (B)

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame, dynamicsymbols
        >>> q = dynamicsymbols('q')
        >>> qd = dynamicsymbols('q', 1)
        >>> N = ReferenceFrame('N')
        >>> B = N.orientnew('B', 'Axis', [q, N.z])
        >>> O = Point('O')
        >>> P = O.locatenew('P', 10 * B.x)
        >>> O.set_vel(N, 5 * N.x)
        >>> P.a2pt_theory(O, N, B)
        - 10*q'**2*B.x + 10*q''*B.y

        """

        _check_frame(outframe)
        _check_frame(fixedframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        a = otherpoint.acc(outframe)
        omega = fixedframe.ang_vel_in(outframe)
        alpha = fixedframe.ang_acc_in(outframe)
        self.set_acc(outframe, a + (alpha ^ dist) + (omega ^ (omega ^ dist)))
        return self.acc(outframe)
Example #14
0
    def a2pt_theory(self, otherpoint, outframe, fixedframe):
        """Sets the acceleration of this point with the 2-point theory.

        The 2-point theory for point acceleration looks like this:

        ^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP)

        where O and P are both points fixed in frame B, which is rotating in
        frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 2-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's acceleration defined in (N)
        fixedframe : ReferenceFrame
            The frame in which both points are fixed (B)

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame, dynamicsymbols
        >>> q = dynamicsymbols('q')
        >>> qd = dynamicsymbols('q', 1)
        >>> N = ReferenceFrame('N')
        >>> B = N.orientnew('B', 'Axis', [q, N.z])
        >>> O = Point('O')
        >>> P = O.locatenew('P', 10 * B.x)
        >>> O.set_vel(N, 5 * N.x)
        >>> P.a2pt_theory(O, N, B)
        - 10*q'**2*B.x + 10*q''*B.y

        """

        _check_frame(outframe)
        _check_frame(fixedframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        a = otherpoint.acc(outframe)
        omega = fixedframe.ang_vel_in(outframe)
        alpha = fixedframe.ang_acc_in(outframe)
        self.set_acc(outframe, a + (alpha ^ dist) + (omega ^ (omega ^ dist)))
        return self.acc(outframe)
Example #15
0
def get_motion_params(frame, **kwargs):
    """
    Returns the three motion parameters - (acceleration, velocity, and
    position) as vectorial functions of time in the given frame.

    If a higher order differential function is provided, the lower order
    functions are used as boundary conditions. For example, given the
    acceleration, the velocity and position parameters are taken as
    boundary conditions.

    The values of time at which the boundary conditions are specified
    are taken from timevalue1(for position boundary condition) and
    timevalue2(for velocity boundary condition).

    If any of the boundary conditions are not provided, they are taken
    to be zero by default (zero vectors, in case of vectorial inputs). If
    the boundary conditions are also functions of time, they are converted
    to constants by substituting the time values in the dynamicsymbols._t
    time Symbol.

    This function can also be used for calculating rotational motion
    parameters. Have a look at the Parameters and Examples for more clarity.

    Parameters
    ==========

    frame : ReferenceFrame
        The frame to express the motion parameters in

    acceleration : Vector
        Acceleration of the object/frame as a function of time

    velocity : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    position : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    timevalue1 : sympyfiable
        Value of time for position boundary condition

    timevalue2 : sympyfiable
        Value of time for velocity boundary condition

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, get_motion_params, dynamicsymbols
    >>> from sympy import symbols
    >>> R = ReferenceFrame('R')
    >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
    >>> v = v1*R.x + v2*R.y + v3*R.z
    >>> get_motion_params(R, position = v)
    (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
    >>> a, b, c = symbols('a b c')
    >>> v = a*R.x + b*R.y + c*R.z
    >>> get_motion_params(R, velocity = v)
    (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
    >>> parameters = get_motion_params(R, acceleration = v)
    >>> parameters[1]
    a*t*R.x + b*t*R.y + c*t*R.z
    >>> parameters[2]
    a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z

    """

    ##Helper functions

    def _process_vector_differential(vectdiff, condition, \
                                     variable, ordinate, frame):
        """
        Helper function for get_motion methods. Finds derivative of vectdiff wrt
        variable, and its integral using the specified boundary condition at
        value of variable = ordinate.
        Returns a tuple of - (derivative, function and integral) wrt vectdiff

        """

        #Make sure boundary condition is independent of 'variable'
        if condition != 0:
            condition = frame.express(condition)
        #Special case of vectdiff == 0
        if vectdiff == Vector(0):
            return (0, 0, condition)
        #Express vectdiff completely in condition's frame to give vectdiff1
        vectdiff1 = frame.express(vectdiff)
        #Find derivative of vectdiff
        vectdiff2 = frame.dt(vectdiff)
        #Integrate and use boundary condition
        vectdiff0 = Vector(0)
        lims = (variable, ordinate, variable)
        for dim in frame:
            function1 = vectdiff1.dot(dim)
            abscissa = dim.dot(condition).subs({variable: ordinate})
            # Indefinite integral of 'function1' wrt 'variable', using
            # the given initial condition (ordinate, abscissa).
            vectdiff0 += (integrate(function1, lims) + abscissa) * dim
        #Return tuple
        return (vectdiff2, vectdiff, vectdiff0)

    ##Function body

    _check_frame(frame)
    #Decide mode of operation based on user's input
    if 'acceleration' in kwargs:
        mode = 2
    elif 'velocity' in kwargs:
        mode = 1
    else:
        mode = 0
    #All the possible parameters in kwargs
    #Not all are required for every case
    #If not specified, set to default values(may or may not be used in
    #calculations)
    conditions = [
        'acceleration', 'velocity', 'position', 'timevalue', 'timevalue1',
        'timevalue2'
    ]
    for i, x in enumerate(conditions):
        if x not in kwargs:
            if i < 3:
                kwargs[x] = Vector(0)
            else:
                kwargs[x] = S(0)
        elif i < 3:
            _check_vector(kwargs[x])
        else:
            kwargs[x] = sympify(kwargs[x])
    if mode == 2:
        vel = _process_vector_differential(kwargs['acceleration'],
                                           kwargs['velocity'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue2'], frame)[2]
        pos = _process_vector_differential(vel, kwargs['position'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue1'], frame)[2]
        return (kwargs['acceleration'], vel, pos)
    elif mode == 1:
        return _process_vector_differential(kwargs['velocity'],
                                            kwargs['position'],
                                            dynamicsymbols._t,
                                            kwargs['timevalue1'], frame)
    else:
        vel = frame.dt(kwargs['position'])
        acc = frame.dt(vel)
        return (acc, vel, kwargs['position'])
Example #16
0
def express(expr, frame, frame2=None, variables=False):
    """
    Global function for 'express' functionality.

    Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.

    Refer to the local methods of Vector and Dyadic for details.
    If 'variables' is True, then the coordinate variables (CoordinateSym
    instances) of other frames present in the vector/scalar field or
    dyadic expression are also substituted in terms of the base scalars of
    this frame.

    Parameters
    ==========

    expr : Vector/Dyadic/scalar(sympyfiable)
        The expression to re-express in ReferenceFrame 'frame'

    frame: ReferenceFrame
        The reference frame to express expr in

    frame2 : ReferenceFrame
        The other frame required for re-expression(only for Dyadic expr)

    variables : boolean
        Specifies whether to substitute the coordinate variables present
        in expr, in terms of those of frame

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, outer, dynamicsymbols
    >>> N = ReferenceFrame('N')
    >>> q = dynamicsymbols('q')
    >>> B = N.orientnew('B', 'Axis', [q, N.z])
    >>> d = outer(N.x, N.x)
    >>> from sympy.physics.mechanics import express
    >>> express(d, B, N)
    cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x)
    >>> express(B.x, N)
    cos(q)*N.x + sin(q)*N.y
    >>> express(N[0], B, variables=True)
    B_x*cos(q(t)) - B_y*sin(q(t))

    """

    _check_frame(frame)

    if expr == 0:
        return S(0)

    if isinstance(expr, Vector):
        #Given expr is a Vector
        if variables:
            #If variables attribute is True, substitute
            #the coordinate variables in the Vector
            frame_list = [x[-1] for x in expr.args]
            subs_dict = {}
            for f in frame_list:
                subs_dict.update(f.variable_map(frame))
            expr = expr.subs(subs_dict)
        #Re-express in this frame
        outvec = Vector([])
        for i, v in enumerate(expr.args):
            if v[1] != frame:
                temp = frame.dcm(v[1]) * v[0]
                if Vector.simp:
                    temp = temp.applyfunc(lambda x: \
                                          trigsimp(x, method='fu'))
                outvec += Vector([(temp, frame)])
            else:
                outvec += Vector([v])
        return outvec

    if isinstance(expr, Dyadic):
        if frame2 is None:
            frame2 = frame
        _check_frame(frame2)
        ol = Dyadic(0)
        for i, v in enumerate(expr.args):
            ol += express(v[0], frame, variables=variables) * \
                  (express(v[1], frame, variables=variables) | \
                   express(v[2], frame2, variables=variables))
        return ol

    else:
        if variables:
            #Given expr is a scalar field
            frame_set = set([])
            expr = sympify(expr)
            #Subsitute all the coordinate variables
            for x in expr.atoms():
                if isinstance(x, CoordinateSym)and x.frame != frame:
                    frame_set.add(x.frame)
            subs_dict = {}
            for f in frame_set:
                subs_dict.update(f.variable_map(frame))
            return expr.subs(subs_dict)
        return expr
Example #17
0
def get_motion_params(frame, **kwargs):
    """
    Returns the three motion parameters - (acceleration, velocity, and
    position) as vectorial functions of time in the given frame.

    If a higher order differential function is provided, the lower order
    functions are used as boundary conditions. For example, given the
    acceleration, the velocity and position parameters are taken as
    boundary conditions.

    The values of time at which the boundary conditions are specified
    are taken from timevalue1(for position boundary condition) and
    timevalue2(for velocity boundary condition).

    If any of the boundary conditions are not provided, they are taken
    to be zero by default (zero vectors, in case of vectorial inputs). If
    the boundary conditions are also functions of time, they are converted
    to constants by substituting the time values in the dynamicsymbols._t
    time Symbol.

    This function can also be used for calculating rotational motion
    parameters. Have a look at the Parameters and Examples for more clarity.

    Parameters
    ==========

    frame : ReferenceFrame
        The frame to express the motion parameters in

    acceleration : Vector
        Acceleration of the object/frame as a function of time

    velocity : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    position : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    timevalue1 : sympyfiable
        Value of time for position boundary condition

    timevalue2 : sympyfiable
        Value of time for velocity boundary condition

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, get_motion_params, dynamicsymbols
    >>> from sympy import symbols
    >>> R = ReferenceFrame('R')
    >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
    >>> v = v1*R.x + v2*R.y + v3*R.z
    >>> get_motion_params(R, position = v)
    (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
    >>> a, b, c = symbols('a b c')
    >>> v = a*R.x + b*R.y + c*R.z
    >>> get_motion_params(R, velocity = v)
    (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
    >>> parameters = get_motion_params(R, acceleration = v)
    >>> parameters[1]
    a*t*R.x + b*t*R.y + c*t*R.z
    >>> parameters[2]
    a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z

    """

    ##Helper functions

    def _process_vector_differential(vectdiff, condition, \
                                     variable, ordinate, frame):
        """
        Helper function for get_motion methods. Finds derivative of vectdiff wrt
        variable, and its integral using the specified boundary condition at
        value of variable = ordinate.
        Returns a tuple of - (derivative, function and integral) wrt vectdiff

        """

        #Make sure boundary condition is independent of 'variable'
        if condition != 0:
            condition = frame.express(condition)
        #Special case of vectdiff == 0
        if vectdiff == Vector(0):
            return (0, 0, condition)
        #Express vectdiff completely in condition's frame to give vectdiff1
        vectdiff1 = frame.express(vectdiff)
        #Find derivative of vectdiff
        vectdiff2 = frame.dt(vectdiff)
        #Integrate and use boundary condition
        vectdiff0 = Vector(0)
        lims = (variable, ordinate, variable)
        for dim in frame:
            function1 = vectdiff1.dot(dim)
            abscissa = dim.dot(condition).subs({variable:ordinate})
            # Indefinite integral of 'function1' wrt 'variable', using
            # the given initial condition (ordinate, abscissa).
            vectdiff0 += (integrate(function1, lims) + abscissa)*dim
        #Return tuple
        return (vectdiff2, vectdiff, vectdiff0)

    ##Function body

    _check_frame(frame)
    #Decide mode of operation based on user's input
    if 'acceleration' in kwargs:
        mode = 2
    elif 'velocity' in kwargs:
        mode = 1
    else:
        mode = 0
    #All the possible parameters in kwargs
    #Not all are required for every case
    #If not specified, set to default values(may or may not be used in
    #calculations)
    conditions = ['acceleration', 'velocity', 'position',
                  'timevalue', 'timevalue1', 'timevalue2']
    for i, x in enumerate(conditions):
        if x not in kwargs:
            if i < 3:
                kwargs[x] = Vector(0)
            else:
                kwargs[x] = S(0)
        elif i < 3:
            _check_vector(kwargs[x])
        else:
            kwargs[x] = sympify(kwargs[x])
    if mode == 2:
        vel = _process_vector_differential(kwargs['acceleration'],
                                           kwargs['velocity'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue2'], frame)[2]
        pos = _process_vector_differential(vel, kwargs['position'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue1'], frame)[2]
        return (kwargs['acceleration'], vel, pos)
    elif mode == 1:
        return _process_vector_differential(kwargs['velocity'],
                                            kwargs['position'],
                                            dynamicsymbols._t,
                                            kwargs['timevalue1'], frame)
    else:
        vel = frame.dt(kwargs['position'])
        acc = frame.dt(vel)
        return (acc, vel, kwargs['position'])
Example #18
0
def time_derivative(expr, frame, order=1):
    """
    Calculate the time derivative of a vector/scalar field function
    or dyadic expression in given frame.

    References
    ==========

    http://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames

    Parameters
    ==========

    expr : Vector/Dyadic/sympifyable
        The expression whose time derivative is to be calculated

    frame : ReferenceFrame
        The reference frame to calculate the time derivative in

    order : integer
        The order of the derivative to be calculated

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, Vector, dynamicsymbols
    >>> from sympy import Symbol
    >>> q1 = Symbol('q1')
    >>> u1 = dynamicsymbols('u1')
    >>> N = ReferenceFrame('N')
    >>> A = N.orientnew('A', 'Axis', [q1, N.x])
    >>> v = u1 * N.x
    >>> A.set_ang_vel(N, 10*A.x)
    >>> from sympy.physics.mechanics import time_derivative
    >>> time_derivative(v, N)
    u1'*N.x
    >>> time_derivative(u1*A[0], N)
    N_x*Derivative(u1(t), t)
    >>> B = N.orientnew('B', 'Axis', [u1, N.z])
    >>> from sympy.physics.mechanics import outer
    >>> d = outer(N.x, N.x)
    >>> time_derivative(d, B)
    - u1'*(N.y|N.x) - u1'*(N.x|N.y)

    """

    t = dynamicsymbols._t
    _check_frame(frame)

    if order == 0:
        return expr
    if order % 1 != 0 or order < 0:
        raise ValueError("Unsupported value of order entered")

    if isinstance(expr, Vector):
        outvec = Vector(0)
        for i, v in enumerate(expr.args):
            if v[1] == frame:
                outvec += Vector([(express(v[0], frame, \
                                           variables=True).diff(t), frame)])
            else:
                outvec += time_derivative(Vector([v]), v[1]) + \
                          (v[1].ang_vel_in(frame) ^ Vector([v]))
        return time_derivative(outvec, frame, order - 1)

    if isinstance(expr, Dyadic):
        ol = Dyadic(0)
        for i, v in enumerate(expr.args):
            ol += (v[0].diff(t) * (v[1] | v[2]))
            ol += (v[0] * (time_derivative(v[1], frame) | v[2]))
            ol += (v[0] * (v[1] | time_derivative(v[2], frame)))
        return time_derivative(ol, frame, order - 1)

    else:
        return diff(express(expr, frame, variables=True), t, order)
Example #19
0
def express(expr, frame, frame2=None, variables=False):
    """
    Global function for 'express' functionality.

    Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.

    Refer to the local methods of Vector and Dyadic for details.
    If 'variables' is True, then the coordinate variables (CoordinateSym
    instances) of other frames present in the vector/scalar field or
    dyadic expression are also substituted in terms of the base scalars of
    this frame.

    Parameters
    ==========

    expr : Vector/Dyadic/scalar(sympyfiable)
        The expression to re-express in ReferenceFrame 'frame'

    frame: ReferenceFrame
        The reference frame to express expr in

    frame2 : ReferenceFrame
        The other frame required for re-expression(only for Dyadic expr)

    variables : boolean
        Specifies whether to substitute the coordinate variables present
        in expr, in terms of those of frame

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, outer, dynamicsymbols
    >>> N = ReferenceFrame('N')
    >>> q = dynamicsymbols('q')
    >>> B = N.orientnew('B', 'Axis', [q, N.z])
    >>> d = outer(N.x, N.x)
    >>> from sympy.physics.mechanics import express
    >>> express(d, B, N)
    cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x)
    >>> express(B.x, N)
    cos(q)*N.x + sin(q)*N.y
    >>> express(N[0], B, variables=True)
    B_x*cos(q(t)) - B_y*sin(q(t))

    """

    _check_frame(frame)

    if expr == 0:
        return S(0)

    if isinstance(expr, Vector):
        #Given expr is a Vector
        if variables:
            #If variables attribute is True, substitute
            #the coordinate variables in the Vector
            frame_list = [x[-1] for x in expr.args]
            subs_dict = {}
            for f in frame_list:
                subs_dict.update(f.variable_map(frame))
            expr = expr.subs(subs_dict)
        #Re-express in this frame
        outvec = Vector([])
        for i, v in enumerate(expr.args):
            if v[1] != frame:
                temp = frame.dcm(v[1]) * v[0]
                if Vector.simp:
                    temp = temp.applyfunc(lambda x: \
                                          trigsimp(x, method='fu'))
                outvec += Vector([(temp, frame)])
            else:
                outvec += Vector([v])
        return outvec

    if isinstance(expr, Dyadic):
        if frame2 is None:
            frame2 = frame
        _check_frame(frame2)
        ol = Dyadic(0)
        for i, v in enumerate(expr.args):
            ol += express(v[0], frame, variables=variables) * \
                  (express(v[1], frame, variables=variables) | \
                   express(v[2], frame2, variables=variables))
        return ol

    else:
        if variables:
            #Given expr is a scalar field
            frame_set = set([])
            expr = sympify(expr)
            #Subsitute all the coordinate variables
            for x in expr.atoms():
                if isinstance(x, CoordinateSym) and x.frame != frame:
                    frame_set.add(x.frame)
            subs_dict = {}
            for f in frame_set:
                subs_dict.update(f.variable_map(frame))
            return expr.subs(subs_dict)
        return expr
Example #20
0
def time_derivative(expr, frame, order=1):
    """
    Calculate the time derivative of a vector/scalar field function
    or dyadic expression in given frame.

    References
    ==========

    http://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames

    Parameters
    ==========

    expr : Vector/Dyadic/sympifyable
        The expression whose time derivative is to be calculated

    frame : ReferenceFrame
        The reference frame to calculate the time derivative in

    order : integer
        The order of the derivative to be calculated

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, Vector, dynamicsymbols
    >>> from sympy import Symbol
    >>> q1 = Symbol('q1')
    >>> u1 = dynamicsymbols('u1')
    >>> N = ReferenceFrame('N')
    >>> A = N.orientnew('A', 'Axis', [q1, N.x])
    >>> v = u1 * N.x
    >>> A.set_ang_vel(N, 10*A.x)
    >>> from sympy.physics.mechanics import time_derivative
    >>> time_derivative(v, N)
    u1'*N.x
    >>> time_derivative(u1*A[0], N)
    N_x*Derivative(u1(t), t)
    >>> B = N.orientnew('B', 'Axis', [u1, N.z])
    >>> from sympy.physics.mechanics import outer
    >>> d = outer(N.x, N.x)
    >>> time_derivative(d, B)
    - u1'*(N.y|N.x) - u1'*(N.x|N.y)

    """

    t = dynamicsymbols._t
    _check_frame(frame)

    if order == 0:
        return expr
    if order%1 != 0 or order < 0:
        raise ValueError("Unsupported value of order entered")

    if isinstance(expr, Vector):
        outvec = Vector(0)
        for i, v in enumerate(expr.args):
            if v[1] == frame:
                outvec += Vector([(express(v[0], frame, \
                                           variables=True).diff(t), frame)])
            else:
                outvec += time_derivative(Vector([v]), v[1]) + \
                          (v[1].ang_vel_in(frame) ^ Vector([v]))
        return time_derivative(outvec, frame, order - 1)

    if isinstance(expr, Dyadic):
        ol = Dyadic(0)
        for i, v in enumerate(expr.args):
            ol += (v[0].diff(t) * (v[1] | v[2]))
            ol += (v[0] * (time_derivative(v[1], frame) | v[2]))
            ol += (v[0] * (v[1] | time_derivative(v[2], frame)))
        return time_derivative(ol, frame, order - 1)

    else:
        return diff(express(expr, frame, variables=True), t, order)