def test_one_dof(): # This is for a 1 dof spring-mass-damper case. # It is described in more detail in the Kane docstring. q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, c, k = symbols('m c k') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, u * N.x) kd = [qd - u] FL = [(P, (-k * q - c * u) * N.x)] pa = Particle() pa.mass = m pa.point = P BL = [pa] KM = Kane(N) KM.coords([q]) KM.speeds([u]) KM.kindiffeq(kd) KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand(-(q * k + u * c) / m) assert KM.linearize() == (Matrix([[0, 1], [k, c]]), Matrix([]))
def test_pend(): q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, l, g = symbols('m l g') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y) kd = [qd - u] FL = [(P, m * g * N.x)] pa = Particle() pa.mass = m pa.point = P BL = [pa] KM = Kane(N) KM.coords([q]) KM.speeds([u]) KM.kindiffeq(kd) KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing rhs.simplify() assert expand(rhs[0]) == expand(-g / l * sin(q))
def test_parallel_axis(): # This is for a 2 dof inverted pendulum on a cart. # This tests the parallel axis code in Kane. The inertia of the pendulum is # defined about the hinge, not about the center of mass. # Defining the constants and knowns of the system gravity = symbols('g') k, ls = symbols('k ls') a, mA, mC = symbols('a mA mC') F = dynamicsymbols('F') Ix, Iy, Iz = symbols('Ix Iy Iz') # Declaring the Generalized coordinates and speeds q1, q2 = dynamicsymbols('q1 q2') q1d, q2d = dynamicsymbols('q1 q2', 1) u1, u2 = dynamicsymbols('u1 u2') u1d, u2d = dynamicsymbols('u1 u2', 1) # Creating reference frames N = ReferenceFrame('N') A = ReferenceFrame('A') A.orient(N, 'Axis', [-q2, N.z]) A.set_ang_vel(N, -u2 * N.z) # Origin of Newtonian reference frame O = Point('O') # Creating and Locating the positions of the cart, C, and the # center of mass of the pendulum, A C = O.locatenew('C', q1 * N.x) Ao = C.locatenew('Ao', a * A.y) # Defining velocities of the points O.set_vel(N, 0) C.set_vel(N, u1 * N.x) Ao.v2pt_theory(C, N, A) Cart = Particle('Cart', C, mC) Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C)) # kinematical differential equations kindiffs = [q1d - u1, q2d - u2] bodyList = [Cart, Pendulum] forceList = [(Ao, -N.y * gravity * mA), (C, -N.y * gravity * mC), (C, -N.x * k * (q1 - ls)), (C, N.x * F)] km=Kane(N) km.coords([q1, q2]) km.speeds([u1, u2]) km.kindiffeq(kindiffs) (fr,frstar) = km.kanes_equations(forceList, bodyList) mm = km.mass_matrix_full assert mm[3, 3] == -Iz
def test_aux(): # Same as above, except we have 2 auxiliary speeds for the ground contact # point, which is known to be zero. In one case, we go through then # substitute the aux. speeds in at the end (they are zero, as well as their # derivative), in the other case, we use the built-in auxiliary speed part # of Kane. The equations from each should be the same. q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2') u4d, u5d = dynamicsymbols('u4, u5', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^ R.ang_vel_in(N))) C = Point('C') C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x)) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) Dmc.a2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) kd = [q1d - u3/cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)] ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))] BodyD = RigidBody() BodyD.mc = Dmc BodyD.inertia = (I, Dmc) BodyD.frame = R BodyD.mass = m BodyList = [BodyD] KM = Kane(N) KM.coords([q1, q2, q3]) KM.speeds([u1, u2, u3, u4, u5]) KM.kindiffeq(kd) kdd = KM.kindiffdict() (fr, frstar) = KM.kanes_equations(ForceList, BodyList) fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0}) frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0}) KM2 = Kane(N) KM2.coords([q1, q2, q3]) KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5]) KM2.kindiffeq(kd) (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList) fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0}) frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0}) assert fr.expand() == fr2.expand() assert frstar.expand() == frstar2.expand()
def test_one_dof(): # This is for a 1 dof spring-mass-damper case. # It is described in more detail in the Kane docstring. q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, c, k = symbols('m c k') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, u * N.x) kd = [qd - u] FL = [(P, (-k * q - c * u) * N.x)] pa = Particle('pa', P, m) BL = [pa] KM = Kane(N) KM.coords([q]) KM.speeds([u]) KM.kindiffeq(kd) KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand(-(q * k + u * c) / m) assert KM.linearize() == (Matrix([[0, 1], [k, c]]), Matrix([]), Matrix([]))
def test_two_dof(): # This is for a 2 d.o.f., 2 particle spring-mass-damper. # The first coordinate is the displacement of the first particle, and the # second is the relative displacement between the first and second # particles. Speeds are defined as the time derivatives of the particles. q1, q2, u1, u2 = dynamicsymbols("q1 q2 u1 u2") q1d, q2d, u1d, u2d = dynamicsymbols("q1 q2 u1 u2", 1) m, c1, c2, k1, k2 = symbols("m c1 c2 k1 k2") N = ReferenceFrame("N") P1 = Point("P1") P2 = Point("P2") P1.set_vel(N, u1 * N.x) P2.set_vel(N, (u1 + u2) * N.x) kd = [q1d - u1, q2d - u2] # Now we create the list of forces, then assign properties to each # particle, then create a list of all particles. FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * q2 - c2 * u2) * N.x)] pa1 = Particle("pa1", P1, m) pa2 = Particle("pa2", P2, m) BL = [pa1, pa2] # Finally we create the Kane object, specify the inertial frame, pass # relevant information, and form Fr & Fr*. Then we calculate the mass # matrix and forcing terms, and finally solve for the udots. KM = Kane(N) KM.coords([q1, q2]) KM.speeds([u1, u2]) KM.kindiffeq(kd) KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) / m) assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m)
def test_aux(): # Same as above, except we have 2 auxiliary speeds for the ground contact # point, which is known to be zero. In one case, we go through then # substitute the aux. speeds in at the end (they are zero, as well as their # derivative), in the other case, we use the built-in auxiliary speed part # of Kane. The equations from each should be the same. q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2') u4d, u5d = dynamicsymbols('u4, u5', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^ R.ang_vel_in(N))) C = Point('C') C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x)) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) Dmc.a2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) kd = [q1d - u3 / cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)] ForceList = [(Dmc, -m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))] BodyD = RigidBody() BodyD.mc = Dmc BodyD.inertia = (I, Dmc) BodyD.frame = R BodyD.mass = m BodyList = [BodyD] KM = Kane(N) KM.coords([q1, q2, q3]) KM.speeds([u1, u2, u3, u4, u5]) KM.kindiffeq(kd) kdd = KM.kindiffdict() (fr, frstar) = KM.kanes_equations(ForceList, BodyList) fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) KM2 = Kane(N) KM2.coords([q1, q2, q3]) KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5]) KM2.kindiffeq(kd) (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList) fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) assert fr.expand() == fr2.expand() assert frstar.expand() == frstar2.expand()
def test_parallel_axis(): # This is for a 2 dof inverted pendulum on a cart. # This tests the parallel axis code in Kane. The inertia of the pendulum is # defined about the hinge, not about the center of mass. # Defining the constants and knowns of the system gravity = symbols('g') k, ls = symbols('k ls') a, mA, mC = symbols('a mA mC') F = dynamicsymbols('F') Ix, Iy, Iz = symbols('Ix Iy Iz') # Declaring the Generalized coordinates and speeds q1, q2 = dynamicsymbols('q1 q2') q1d, q2d = dynamicsymbols('q1 q2', 1) u1, u2 = dynamicsymbols('u1 u2') u1d, u2d = dynamicsymbols('u1 u2', 1) # Creating reference frames N = ReferenceFrame('N') A = ReferenceFrame('A') A.orient(N, 'Axis', [-q2, N.z]) A.set_ang_vel(N, -u2 * N.z) # Origin of Newtonian reference frame O = Point('O') # Creating and Locating the positions of the cart, C, and the # center of mass of the pendulum, A C = O.locatenew('C', q1 * N.x) Ao = C.locatenew('Ao', a * A.y) # Defining velocities of the points O.set_vel(N, 0) C.set_vel(N, u1 * N.x) Ao.v2pt_theory(C, N, A) Cart = Particle('Cart', C, mC) Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C)) # kinematical differential equations kindiffs = [q1d - u1, q2d - u2] bodyList = [Cart, Pendulum] forceList = [(Ao, -N.y * gravity * mA), (C, -N.y * gravity * mC), (C, -N.x * k * (q1 - ls)), (C, N.x * F)] km = Kane(N) km.coords([q1, q2]) km.speeds([u1, u2]) km.kindiffeq(kindiffs) (fr, frstar) = km.kanes_equations(forceList, bodyList) mm = km.mass_matrix_full assert mm[3, 3] == -Iz
def test_two_dof(): # This is for a 2 d.o.f., 2 particle spring-mass-damper. # The first coordinate is the displacement of the first particle, and the # second is the relative displacement between the first and second # particles. Speeds are defined as the time derivatives of the particles. q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1) m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') N = ReferenceFrame('N') P1 = Point('P1') P2 = Point('P2') P1.set_vel(N, u1 * N.x) P2.set_vel(N, (u1 + u2) * N.x) kd = [q1d - u1, q2d - u2] # Now we create the list of forces, then assign properties to each # particle, then create a list of all particles. FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * q2 - c2 * u2) * N.x)] pa1 = Particle() pa2 = Particle() pa1.mass = m pa2.mass = m pa1.point = P1 pa2.point = P2 BL = [pa1, pa2] # Finally we create the Kane object, specify the inertial frame, pass # relevant information, and form Fr & Fr*. Then we calculate the mass # matrix and forcing terms, and finally solve for the udots. KM = Kane(N) KM.coords([q1, q2]) KM.speeds([u1, u2]) KM.kindiffeq(kd) KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand( (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) / m) assert expand(rhs[1]) == expand( (k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m)
def test_rolling_disc(): # Rolling Disc Example # Here the rolling disc is formed from the contact point up, removing the # need to introduce generalized speeds. Only 3 configuration and three # speed variables are need to describe this system, along with the disc's # mass and radius, and the local gravity (note that mass will drop out). q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) r, m, g = symbols('r m g') # The kinematics are formed by a series of simple rotations. Each simple # rotation creates a new frame, and the next rotation is defined by the new # frame's basis vectors. This example uses a 3-1-2 series of rotations, or # Z, X, Y series of rotations. Angular velocity for this is defined using # the second frame's basis (the lean frame). N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^ R.ang_vel_in(N))) # This is the translational kinematics. We create a point with no velocity # in N; this is the contact point between the disc and ground. Next we form # the position vector from the contact point to the disc's center of mass. # Finally we form the velocity and acceleration of the disc. C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) Dmc.a2pt_theory(C, N, R) # This is a simple way to form the inertia dyadic. I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) # Kinematic differential equations; how the generalized coordinate time # derivatives relate to generalized speeds. kd = [q1d - u3 / cos(q2), q2d - u1, q3d - u2 + u3 * tan(q2)] # Creation of the force list; it is the gravitational force at the mass # center of the disc. Then we create the disc by assigning a Point to the # center of mass attribute, a ReferenceFrame to the frame attribute, and mass # and inertia. Then we form the body list. ForceList = [(Dmc, -m * g * Y.z)] BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyList = [BodyD] # Finally we form the equations of motion, using the same steps we did # before. Specify inertial frame, supply generalized speeds, supply # kinematic differential equation dictionary, compute Fr from the force # list and Fr* from the body list, compute the mass matrix and forcing # terms, then solve for the u dots (time derivatives of the generalized # speeds). KM = Kane(N) KM.coords([q1, q2, q3]) KM.speeds([u1, u2, u3]) KM.kindiffeq(kd) KM.kanes_equations(ForceList, BodyList) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing kdd = KM.kindiffdict() rhs = rhs.subs(kdd) assert rhs.expand() == Matrix([ (10 * u2 * u3 * r - 5 * u3**2 * r * tan(q2) + 4 * g * sin(q2)) / (5 * r), -2 * u1 * u3 / 3, u1 * (-2 * u2 + u3 * tan(q2)) ]).expand()
def test_rolling_disc(): # Rolling Disc Example # Here the rolling disc is formed from the contact point up, removing the # need to introduce generalized speeds. Only 3 configuration and three # speed variables are need to describe this system, along with the disc's # mass and radius, and the local graivty (note that mass will drop out). q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) r, m, g = symbols('r m g') # The kinematics are formed by a series of simple rotations. Each simple # rotation creates a new frame, and the next rotation is defined by the new # frame's basis vectors. This example uses a 3-1-2 series of rotations, or # Z, X, Y series of rotations. Angular velocity for this is defined using # the second frame's basis (the lean frame). N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^ R.ang_vel_in(N))) # This is the translational kinematics. We create a point with no velocity # in N; this is the contact point between the disc and ground. Next we form # the position vector from the contact point to the disc mass center. # Finally we form the velocity and acceleration of the disc. C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) Dmc.a2pt_theory(C, N, R) # This is a simple way to form the inertia dyadic. I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) # Kinematic differential equations; how the generalized coordinate time # derivatives relate to generalized speeds. kd = [q1d - u3/cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)] # Creation of the force list; it is the gravitational force at the mass # center of the disc. Then we create the disc by assigning a Point to the # mass center attribute, a ReferenceFrame to the frame attribute, and mass # and inertia. Then we form the body list. ForceList = [(Dmc, - m * g * Y.z)] BodyD = RigidBody() BodyD.mc = Dmc BodyD.inertia = (I, Dmc) BodyD.frame = R BodyD.mass = m BodyList = [BodyD] # Finally we form the equations of motion, using the same steps we did # before. Specify inertial frame, supply generalized speeds, supply # kinematic differential equation dictionary, compute Fr from the force # list and Fr* fromt the body list, compute the mass matrix and forcing # terms, then solve for the u dots (time derivatives of the generalized # speeds). KM = Kane(N) KM.coords([q1, q2, q3]) KM.speeds([u1, u2, u3]) KM.kindiffeq(kd) KM.kanes_equations(ForceList, BodyList) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing kdd = KM.kindiffdict() rhs = rhs.subs(kdd) assert rhs.expand() == Matrix([(10*u2*u3*r - 5*u3**2*r*tan(q2) + 4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand()