Example #1
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring is True
    assert QQ.has_assoc_Ring is True
    assert ZZ[x].has_assoc_Ring is True
    assert QQ[x].has_assoc_Ring is True
    assert ZZ[x, y].has_assoc_Ring is True
    assert QQ[x, y].has_assoc_Ring is True
    assert ZZ.frac_field(x).has_assoc_Ring is True
    assert QQ.frac_field(x).has_assoc_Ring is True
    assert ZZ.frac_field(x, y).has_assoc_Ring is True
    assert QQ.frac_field(x, y).has_assoc_Ring is True

    assert EX.has_assoc_Ring is False
    assert RR.has_assoc_Ring is False
    assert ALG.has_assoc_Ring is False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    assert EX.get_ring() == EX

    assert RR.get_ring() == RR
    # XXX: This should also be like RR
    raises(DomainError, lambda: ALG.get_ring())
Example #2
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring == True
    assert QQ.has_assoc_Ring == True
    assert ZZ[x].has_assoc_Ring == True
    assert QQ[x].has_assoc_Ring == True
    assert ZZ[x,y].has_assoc_Ring == True
    assert QQ[x,y].has_assoc_Ring == True
    assert ZZ.frac_field(x).has_assoc_Ring == True
    assert QQ.frac_field(x).has_assoc_Ring == True
    assert ZZ.frac_field(x,y).has_assoc_Ring == True
    assert QQ.frac_field(x,y).has_assoc_Ring == True

    assert EX.has_assoc_Ring == False
    assert RR.has_assoc_Ring == False
    assert ALG.has_assoc_Ring == False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x,y].get_ring() == ZZ[x,y]
    assert QQ[x,y].get_ring() == QQ[x,y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x,y).get_ring() == ZZ[x,y]
    assert QQ.frac_field(x,y).get_ring() == QQ[x,y]

    raises(DomainError, "EX.get_ring()")
    raises(DomainError, "RR.get_ring()")
    raises(DomainError, "ALG.get_ring()")
Example #3
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring is True
    assert QQ.has_assoc_Ring is True
    assert ZZ[x].has_assoc_Ring is True
    assert QQ[x].has_assoc_Ring is True
    assert ZZ[x, y].has_assoc_Ring is True
    assert QQ[x, y].has_assoc_Ring is True
    assert ZZ.frac_field(x).has_assoc_Ring is True
    assert QQ.frac_field(x).has_assoc_Ring is True
    assert ZZ.frac_field(x, y).has_assoc_Ring is True
    assert QQ.frac_field(x, y).has_assoc_Ring is True

    assert EX.has_assoc_Ring is False
    assert RR.has_assoc_Ring is False
    assert ALG.has_assoc_Ring is False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    assert EX.get_ring() == EX

    raises(DomainError, lambda: RR.get_ring())
    raises(DomainError, lambda: ALG.get_ring())
Example #4
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring is True
    assert QQ.has_assoc_Ring is True
    assert ZZ[x].has_assoc_Ring is True
    assert QQ[x].has_assoc_Ring is True
    assert ZZ[x, y].has_assoc_Ring is True
    assert QQ[x, y].has_assoc_Ring is True
    assert ZZ.frac_field(x).has_assoc_Ring is True
    assert QQ.frac_field(x).has_assoc_Ring is True
    assert ZZ.frac_field(x, y).has_assoc_Ring is True
    assert QQ.frac_field(x, y).has_assoc_Ring is True

    assert EX.has_assoc_Ring is False
    assert RR.has_assoc_Ring is False
    assert ALG.has_assoc_Ring is False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    assert EX.get_ring() == EX

    raises(DomainError, lambda: RR.get_ring())
    raises(DomainError, lambda: ALG.get_ring())
Example #5
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring is True
    assert QQ.has_assoc_Ring is True
    assert ZZ[x].has_assoc_Ring is True
    assert QQ[x].has_assoc_Ring is True
    assert ZZ[x, y].has_assoc_Ring is True
    assert QQ[x, y].has_assoc_Ring is True
    assert ZZ.frac_field(x).has_assoc_Ring is True
    assert QQ.frac_field(x).has_assoc_Ring is True
    assert ZZ.frac_field(x, y).has_assoc_Ring is True
    assert QQ.frac_field(x, y).has_assoc_Ring is True

    assert EX.has_assoc_Ring is False
    assert RR.has_assoc_Ring is False
    assert ALG.has_assoc_Ring is False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    assert EX.get_ring() == EX

    assert RR.get_ring() == RR
    # XXX: This should also be like RR
    raises(DomainError, lambda: ALG.get_ring())
Example #6
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring == True
    assert QQ.has_assoc_Ring == True
    assert ZZ[x].has_assoc_Ring == True
    assert QQ[x].has_assoc_Ring == True
    assert ZZ[x, y].has_assoc_Ring == True
    assert QQ[x, y].has_assoc_Ring == True
    assert ZZ.frac_field(x).has_assoc_Ring == True
    assert QQ.frac_field(x).has_assoc_Ring == True
    assert ZZ.frac_field(x, y).has_assoc_Ring == True
    assert QQ.frac_field(x, y).has_assoc_Ring == True

    assert EX.has_assoc_Ring == False
    assert RR.has_assoc_Ring == False
    assert ALG.has_assoc_Ring == False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    raises(DomainError, "EX.get_ring()")
    raises(DomainError, "RR.get_ring()")
    raises(DomainError, "ALG.get_ring()")
def test_Domain_preprocess():
    assert Domain.preprocess(ZZ) == ZZ
    assert Domain.preprocess(QQ) == QQ
    assert Domain.preprocess(EX) == EX
    assert Domain.preprocess(FF(2)) == FF(2)
    assert Domain.preprocess(ZZ[x, y]) == ZZ[x, y]

    assert Domain.preprocess('Z') == ZZ
    assert Domain.preprocess('Q') == QQ

    assert Domain.preprocess('ZZ') == ZZ
    assert Domain.preprocess('QQ') == QQ

    assert Domain.preprocess('EX') == EX

    assert Domain.preprocess('FF(23)') == FF(23)
    assert Domain.preprocess('GF(23)') == GF(23)

    raises(OptionError, lambda: Domain.preprocess('Z[]'))

    assert Domain.preprocess('Z[x]') == ZZ[x]
    assert Domain.preprocess('Q[x]') == QQ[x]

    assert Domain.preprocess('ZZ[x]') == ZZ[x]
    assert Domain.preprocess('QQ[x]') == QQ[x]

    assert Domain.preprocess('Z[x,y]') == ZZ[x, y]
    assert Domain.preprocess('Q[x,y]') == QQ[x, y]

    assert Domain.preprocess('ZZ[x,y]') == ZZ[x, y]
    assert Domain.preprocess('QQ[x,y]') == QQ[x, y]

    raises(OptionError, lambda: Domain.preprocess('Z()'))

    assert Domain.preprocess('Z(x)') == ZZ.frac_field(x)
    assert Domain.preprocess('Q(x)') == QQ.frac_field(x)

    assert Domain.preprocess('ZZ(x)') == ZZ.frac_field(x)
    assert Domain.preprocess('QQ(x)') == QQ.frac_field(x)

    assert Domain.preprocess('Z(x,y)') == ZZ.frac_field(x, y)
    assert Domain.preprocess('Q(x,y)') == QQ.frac_field(x, y)

    assert Domain.preprocess('ZZ(x,y)') == ZZ.frac_field(x, y)
    assert Domain.preprocess('QQ(x,y)') == QQ.frac_field(x, y)

    assert Domain.preprocess('Q<I>') == QQ.algebraic_field(I)
    assert Domain.preprocess('QQ<I>') == QQ.algebraic_field(I)

    assert Domain.preprocess('Q<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I)
    assert Domain.preprocess(
        'QQ<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I)

    raises(OptionError, lambda: Domain.preprocess('abc'))
Example #8
0
def test_Domain_preprocess():
    assert Domain.preprocess(ZZ) == ZZ
    assert Domain.preprocess(QQ) == QQ
    assert Domain.preprocess(EX) == EX
    assert Domain.preprocess(FF(2)) == FF(2)
    assert Domain.preprocess(ZZ[x, y]) == ZZ[x, y]

    assert Domain.preprocess('Z') == ZZ
    assert Domain.preprocess('Q') == QQ

    assert Domain.preprocess('ZZ') == ZZ
    assert Domain.preprocess('QQ') == QQ

    assert Domain.preprocess('EX') == EX

    assert Domain.preprocess('FF(23)') == FF(23)
    assert Domain.preprocess('GF(23)') == GF(23)

    raises(OptionError, lambda: Domain.preprocess('Z[]'))

    assert Domain.preprocess('Z[x]') == ZZ[x]
    assert Domain.preprocess('Q[x]') == QQ[x]

    assert Domain.preprocess('ZZ[x]') == ZZ[x]
    assert Domain.preprocess('QQ[x]') == QQ[x]

    assert Domain.preprocess('Z[x,y]') == ZZ[x, y]
    assert Domain.preprocess('Q[x,y]') == QQ[x, y]

    assert Domain.preprocess('ZZ[x,y]') == ZZ[x, y]
    assert Domain.preprocess('QQ[x,y]') == QQ[x, y]

    raises(OptionError, lambda: Domain.preprocess('Z()'))

    assert Domain.preprocess('Z(x)') == ZZ.frac_field(x)
    assert Domain.preprocess('Q(x)') == QQ.frac_field(x)

    assert Domain.preprocess('ZZ(x)') == ZZ.frac_field(x)
    assert Domain.preprocess('QQ(x)') == QQ.frac_field(x)

    assert Domain.preprocess('Z(x,y)') == ZZ.frac_field(x, y)
    assert Domain.preprocess('Q(x,y)') == QQ.frac_field(x, y)

    assert Domain.preprocess('ZZ(x,y)') == ZZ.frac_field(x, y)
    assert Domain.preprocess('QQ(x,y)') == QQ.frac_field(x, y)

    assert Domain.preprocess('Q<I>') == QQ.algebraic_field(I)
    assert Domain.preprocess('QQ<I>') == QQ.algebraic_field(I)

    assert Domain.preprocess('Q<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I)
    assert Domain.preprocess('QQ<sqrt(2), I>') == QQ.algebraic_field(
        sqrt(2), I)

    raises(OptionError, lambda: Domain.preprocess('abc'))
Example #9
0
def test_Domain___eq__():
    assert (ZZ[x,y] == ZZ[x,y]) == True
    assert (QQ[x,y] == QQ[x,y]) == True

    assert (ZZ[x,y] == QQ[x,y]) == False
    assert (QQ[x,y] == ZZ[x,y]) == False

    assert (ZZ.frac_field(x,y) == ZZ.frac_field(x,y)) == True
    assert (QQ.frac_field(x,y) == QQ.frac_field(x,y)) == True

    assert (ZZ.frac_field(x,y) == QQ.frac_field(x,y)) == False
    assert (QQ.frac_field(x,y) == ZZ.frac_field(x,y)) == False
Example #10
0
def test_Domain_preprocess():
    assert Domain.preprocess(ZZ) == ZZ
    assert Domain.preprocess(QQ) == QQ
    assert Domain.preprocess(EX) == EX
    assert Domain.preprocess(FF(2)) == FF(2)
    assert Domain.preprocess(ZZ[x, y]) == ZZ[x, y]

    assert Domain.preprocess("Z") == ZZ
    assert Domain.preprocess("Q") == QQ

    assert Domain.preprocess("ZZ") == ZZ
    assert Domain.preprocess("QQ") == QQ

    assert Domain.preprocess("EX") == EX

    assert Domain.preprocess("FF(23)") == FF(23)
    assert Domain.preprocess("GF(23)") == GF(23)

    raises(OptionError, "Domain.preprocess('Z[]')")

    assert Domain.preprocess("Z[x]") == ZZ[x]
    assert Domain.preprocess("Q[x]") == QQ[x]

    assert Domain.preprocess("ZZ[x]") == ZZ[x]
    assert Domain.preprocess("QQ[x]") == QQ[x]

    assert Domain.preprocess("Z[x,y]") == ZZ[x, y]
    assert Domain.preprocess("Q[x,y]") == QQ[x, y]

    assert Domain.preprocess("ZZ[x,y]") == ZZ[x, y]
    assert Domain.preprocess("QQ[x,y]") == QQ[x, y]

    raises(OptionError, "Domain.preprocess('Z()')")

    assert Domain.preprocess("Z(x)") == ZZ.frac_field(x)
    assert Domain.preprocess("Q(x)") == QQ.frac_field(x)

    assert Domain.preprocess("ZZ(x)") == ZZ.frac_field(x)
    assert Domain.preprocess("QQ(x)") == QQ.frac_field(x)

    assert Domain.preprocess("Z(x,y)") == ZZ.frac_field(x, y)
    assert Domain.preprocess("Q(x,y)") == QQ.frac_field(x, y)

    assert Domain.preprocess("ZZ(x,y)") == ZZ.frac_field(x, y)
    assert Domain.preprocess("QQ(x,y)") == QQ.frac_field(x, y)

    assert Domain.preprocess("Q<I>") == QQ.algebraic_field(I)
    assert Domain.preprocess("QQ<I>") == QQ.algebraic_field(I)

    assert Domain.preprocess("Q<sqrt(2), I>") == QQ.algebraic_field(sqrt(2), I)
    assert Domain.preprocess("QQ<sqrt(2), I>") == QQ.algebraic_field(sqrt(2), I)

    raises(OptionError, "Domain.preprocess('abc')")
Example #11
0
def test_Domain___eq__():
    assert (ZZ[x, y] == ZZ[x, y]) == True
    assert (QQ[x, y] == QQ[x, y]) == True

    assert (ZZ[x, y] == QQ[x, y]) == False
    assert (QQ[x, y] == ZZ[x, y]) == False

    assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) == True
    assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) == True

    assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) == False
    assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) == False
Example #12
0
def test_Domain___eq__():
    assert (ZZ[x, y] == ZZ[x, y]) is True
    assert (QQ[x, y] == QQ[x, y]) is True

    assert (ZZ[x, y] == QQ[x, y]) is False
    assert (QQ[x, y] == ZZ[x, y]) is False

    assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True
    assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True

    assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False
    assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False

    assert RealField()[x] == RR[x]
Example #13
0
def test_Domain_get_exact():
    assert EX.get_exact() == EX
    assert ZZ.get_exact() == ZZ
    assert QQ.get_exact() == QQ
    assert RR.get_exact() == QQ
    assert ALG.get_exact() == ALG
    assert ZZ[x].get_exact() == ZZ[x]
    assert QQ[x].get_exact() == QQ[x]
    assert ZZ[x,y].get_exact() == ZZ[x,y]
    assert QQ[x,y].get_exact() == QQ[x,y]
    assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
    assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
    assert ZZ.frac_field(x,y).get_exact() == ZZ.frac_field(x,y)
    assert QQ.frac_field(x,y).get_exact() == QQ.frac_field(x,y)
Example #14
0
def test_Domain___eq__():
    assert (ZZ[x, y] == ZZ[x, y]) is True
    assert (QQ[x, y] == QQ[x, y]) is True

    assert (ZZ[x, y] == QQ[x, y]) is False
    assert (QQ[x, y] == ZZ[x, y]) is False

    assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True
    assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True

    assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False
    assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False

    assert RealField()[x] == RR[x]
Example #15
0
def test_Domain_get_exact():
    assert EX.get_exact() == EX
    assert ZZ.get_exact() == ZZ
    assert QQ.get_exact() == QQ
    assert RR.get_exact() == QQ
    assert ALG.get_exact() == ALG
    assert ZZ[x].get_exact() == ZZ[x]
    assert QQ[x].get_exact() == QQ[x]
    assert ZZ[x, y].get_exact() == ZZ[x, y]
    assert QQ[x, y].get_exact() == QQ[x, y]
    assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
    assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
    assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y)
    assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
Example #16
0
def test_PrettyPoly():
    from sympy.polys.domains import QQ
    F = QQ.frac_field(x, y)
    R = QQ[x, y]

    assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
    assert latex(R.convert(x + y)) == latex(x + y)
Example #17
0
def test_localring():
    Qxy = QQ.frac_field(x, y)
    R   = QQ.poly_ring(x, y, order="ilex")
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) in R
    assert Y in R
    assert X.ring == R
    assert X*(Y**2+1)/(1 + X) == R.convert(x*(y**2 + 1)/(1 + x))
    assert X*y == X*Y
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(ExactQuotientFailed, lambda: x/Y)
    raises(ExactQuotientFailed, lambda: X/y)
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X - y == X - Y == R.convert(x - y) == x - Y
    assert X + 1 == R.convert(x + 1)
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ[x, y].convert(x), ZZ[x, y]) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    raises(CoercionFailed, lambda: R.from_FractionField(Qxy.convert(x)/y, Qxy))
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(NotReversible, lambda: X.invert())

    assert R._sdm_to_vector(R._vector_to_sdm([X/(X + 1), Y/(1 + X*Y)], R.order),
                                             2) == \
        [X*(1 + X*Y), Y*(1 + X)]
Example #18
0
def test_globalring():
    Qxy = QQ.frac_field(x, y)
    R   = QQ[x, y]
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) not in R
    assert Y in R
    assert X.ring == R
    assert X * (Y**2 + 1) == R.convert(x * (y**2 + 1))
    assert X * y == X * Y == R.convert(x * y) == x * Y
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X - y == X - Y == R.convert(x - y) == x - Y
    assert X + 1 == R.convert(x + 1)
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(ExactQuotientFailed, lambda: x/Y)
    raises(ExactQuotientFailed, lambda: X/y)
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ[x, y].convert(x), ZZ[x, y]) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    assert R.from_FractionField(Qxy.convert(x)/y, Qxy) is None

    assert R._sdm_to_vector(R._vector_to_sdm([X, Y], R.order), 2) == [X, Y]
Example #19
0
def test_PrettyPoly():
    from sympy.polys.domains import QQ
    F = QQ.frac_field(x, y)
    R = QQ[x, y]

    assert latex(F.convert(x / (x + y))) == latex(x / (x + y))
    assert latex(R.convert(x + y)) == latex(x + y)
Example #20
0
def test_Domain_convert():
    def check_element(e1, e2, K1, K2, K3):
        assert type(e1) is type(e2), '%s, %s: %s %s -> %s' % (e1, e2, K1, K2,
                                                              K3)
        assert e1 == e2, '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3)

    def check_domains(K1, K2):
        K3 = K1.unify(K2)
        check_element(K3.convert_from(K1.one, K1), K3.one, K1, K2, K3)
        check_element(K3.convert_from(K2.one, K2), K3.one, K1, K2, K3)
        check_element(K3.convert_from(K1.zero, K1), K3.zero, K1, K2, K3)
        check_element(K3.convert_from(K2.zero, K2), K3.zero, K1, K2, K3)

    def composite_domains(K):
        domains = [
            K,
            K[y],
            K[z],
            K[y, z],
            K.frac_field(y),
            K.frac_field(z),
            K.frac_field(y, z),
            # XXX: These should be tested and made to work...
            # K.old_poly_ring(y), K.old_frac_field(y),
        ]
        return domains

    QQ2 = QQ.algebraic_field(sqrt(2))
    QQ3 = QQ.algebraic_field(sqrt(3))
    doms = [ZZ, QQ, QQ2, QQ3, QQ_I, ZZ_I, RR, CC]

    for i, K1 in enumerate(doms):
        for K2 in doms[i:]:
            for K3 in composite_domains(K1):
                for K4 in composite_domains(K2):
                    check_domains(K3, K4)

    assert QQ.convert(10e-52) == QQ(
        1684996666696915,
        1684996666696914987166688442938726917102321526408785780068975640576)

    R, xr = ring("x", ZZ)
    assert ZZ.convert(xr - xr) == 0
    assert ZZ.convert(xr - xr, R.to_domain()) == 0

    assert CC.convert(ZZ_I(1, 2)) == CC(1, 2)
    assert CC.convert(QQ_I(1, 2)) == CC(1, 2)

    K1 = QQ.frac_field(x)
    K2 = ZZ.frac_field(x)
    K3 = QQ[x]
    K4 = ZZ[x]
    Ks = [K1, K2, K3, K4]
    for Ka, Kb in product(Ks, Ks):
        assert Ka.convert_from(Kb.from_sympy(x), Kb) == Ka.from_sympy(x)

    assert K2.convert_from(QQ(1, 2), QQ) == K2(QQ(1, 2))
Example #21
0
def test_Domain_get_field():
    assert EX.has_assoc_Field == True
    assert ZZ.has_assoc_Field == True
    assert QQ.has_assoc_Field == True
    assert RR.has_assoc_Field == False
    assert ALG.has_assoc_Field == True
    assert ZZ[x].has_assoc_Field == True
    assert QQ[x].has_assoc_Field == True
    assert ZZ[x,y].has_assoc_Field == True
    assert QQ[x,y].has_assoc_Field == True

    assert EX.get_field() == EX
    assert ZZ.get_field() == QQ
    assert QQ.get_field() == QQ
    raises(DomainError, "RR.get_field()")
    assert ALG.get_field() == ALG
    assert ZZ[x].get_field() == ZZ.frac_field(x)
    assert QQ[x].get_field() == QQ.frac_field(x)
    assert ZZ[x,y].get_field() == ZZ.frac_field(x,y)
    assert QQ[x,y].get_field() == QQ.frac_field(x,y)
Example #22
0
def test_Domain_get_field():
    assert EX.has_assoc_Field is True
    assert ZZ.has_assoc_Field is True
    assert QQ.has_assoc_Field is True
    assert RR.has_assoc_Field is True
    assert ALG.has_assoc_Field is True
    assert ZZ[x].has_assoc_Field is True
    assert QQ[x].has_assoc_Field is True
    assert ZZ[x, y].has_assoc_Field is True
    assert QQ[x, y].has_assoc_Field is True

    assert EX.get_field() == EX
    assert ZZ.get_field() == QQ
    assert QQ.get_field() == QQ
    assert RR.get_field() == RR
    assert ALG.get_field() == ALG
    assert ZZ[x].get_field() == ZZ.frac_field(x)
    assert QQ[x].get_field() == QQ.frac_field(x)
    assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
    assert QQ[x, y].get_field() == QQ.frac_field(x, y)
Example #23
0
def test_Domain_get_field():
    assert EX.has_assoc_Field is True
    assert ZZ.has_assoc_Field is True
    assert QQ.has_assoc_Field is True
    assert RR.has_assoc_Field is True
    assert ALG.has_assoc_Field is True
    assert ZZ[x].has_assoc_Field is True
    assert QQ[x].has_assoc_Field is True
    assert ZZ[x, y].has_assoc_Field is True
    assert QQ[x, y].has_assoc_Field is True

    assert EX.get_field() == EX
    assert ZZ.get_field() == QQ
    assert QQ.get_field() == QQ
    assert RR.get_field() == RR
    assert ALG.get_field() == ALG
    assert ZZ[x].get_field() == ZZ.frac_field(x)
    assert QQ[x].get_field() == QQ.frac_field(x)
    assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
    assert QQ[x, y].get_field() == QQ.frac_field(x, y)
Example #24
0
def test_Domain_get_field():
    assert EX.has_assoc_Field == True
    assert ZZ.has_assoc_Field == True
    assert QQ.has_assoc_Field == True
    assert RR.has_assoc_Field == False
    assert ALG.has_assoc_Field == True
    assert ZZ[x].has_assoc_Field == True
    assert QQ[x].has_assoc_Field == True
    assert ZZ[x, y].has_assoc_Field == True
    assert QQ[x, y].has_assoc_Field == True

    assert EX.get_field() == EX
    assert ZZ.get_field() == QQ
    assert QQ.get_field() == QQ
    raises(DomainError, "RR.get_field()")
    assert ALG.get_field() == ALG
    assert ZZ[x].get_field() == ZZ.frac_field(x)
    assert QQ[x].get_field() == QQ.frac_field(x)
    assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
    assert QQ[x, y].get_field() == QQ.frac_field(x, y)
Example #25
0
def test_Domain_is_unit():
    nums = [-2, -1, 0, 1, 2]
    invring = [False, True, False, True, False]
    invfield = [True, True, False, True, True]
    ZZx, QQx, QQxf = ZZ[x], QQ[x], QQ.frac_field(x)
    assert [ZZ.is_unit(ZZ(n)) for n in nums] == invring
    assert [QQ.is_unit(QQ(n)) for n in nums] == invfield
    assert [ZZx.is_unit(ZZx(n)) for n in nums] == invring
    assert [QQx.is_unit(QQx(n)) for n in nums] == invfield
    assert [QQxf.is_unit(QQxf(n)) for n in nums] == invfield
    assert ZZx.is_unit(ZZx(x)) is False
    assert QQx.is_unit(QQx(x)) is False
    assert QQxf.is_unit(QQxf(x)) is True
Example #26
0
def test_globalring():
    Qxy = QQ.frac_field(x, y)
    R   = QQ[x, y]
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) not in R
    assert Y in R
    assert X.ring == R
    assert X * (Y**2 + 1) == R.convert(x * (y**2 + 1))
    assert X * y == X * Y == R.convert(x * y) == x * Y
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X + 1 == R.convert(x + 1)
    raises(ExactQuotientFailed, 'X/Y')
    raises(ExactQuotientFailed, 'x/Y')
    raises(ExactQuotientFailed, 'X/y')
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ[x, y].convert(x), ZZ[x, y]) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    assert R.from_FractionField(Qxy.convert(x)/y, Qxy) is None
Example #27
0
def test_localring():
    Qxy = QQ.frac_field(x, y)
    R   = QQ.poly_ring(x, y, order="ilex")
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) in R
    assert Y in R
    assert X.ring == R
    assert X*(Y**2+1)/(1 + X) == R.convert(x*(y**2 + 1)/(1 + x))
    assert X*y == X*Y
    raises(ExactQuotientFailed, 'X/Y')
    raises(ExactQuotientFailed, 'x/Y')
    raises(ExactQuotientFailed, 'X/y')
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X + 1 == R.convert(x + 1)
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ[x, y].convert(x), ZZ[x, y]) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    raises(CoercionFailed, 'R.from_FractionField(Qxy.convert(x)/y, Qxy)')
Example #28
0
def test_localring():
    Qxy = QQ.frac_field(x, y)
    R   = QQ.poly_ring(x, y, order="ilex")
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) in R
    assert Y in R
    assert X.ring == R
    assert X*(Y**2+1)/(1 + X) == R.convert(x*(y**2 + 1)/(1 + x))
    assert X*y == X*Y
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(ExactQuotientFailed, lambda: x/Y)
    raises(ExactQuotientFailed, lambda: X/y)
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X + 1 == R.convert(x + 1)
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ[x, y].convert(x), ZZ[x, y]) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    raises(CoercionFailed, lambda: R.from_FractionField(Qxy.convert(x)/y, Qxy))
Example #29
0
def test_Domain_unify_composite():
    assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x)

    assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)

    assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x)

    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y)

    assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z)
    assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
    assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
    assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)

    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)

    assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)

    assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)
Example #30
0
def test_Domain__unify():
    assert ZZ.unify(ZZ) == ZZ
    assert QQ.unify(QQ) == QQ

    assert ZZ.unify(QQ) == QQ
    assert QQ.unify(ZZ) == QQ

    assert EX.unify(EX) == EX

    assert ZZ.unify(EX) == EX
    assert QQ.unify(EX) == EX
    assert EX.unify(ZZ) == EX
    assert EX.unify(QQ) == EX

    assert ZZ.poly_ring(x).unify(EX) == EX
    assert ZZ.frac_field(x).unify(EX) == EX
    assert EX.unify(ZZ.poly_ring(x)) == EX
    assert EX.unify(ZZ.frac_field(x)) == EX

    assert ZZ.poly_ring(x, y).unify(EX) == EX
    assert ZZ.frac_field(x, y).unify(EX) == EX
    assert EX.unify(ZZ.poly_ring(x, y)) == EX
    assert EX.unify(ZZ.frac_field(x, y)) == EX

    assert QQ.poly_ring(x).unify(EX) == EX
    assert QQ.frac_field(x).unify(EX) == EX
    assert EX.unify(QQ.poly_ring(x)) == EX
    assert EX.unify(QQ.frac_field(x)) == EX

    assert QQ.poly_ring(x, y).unify(EX) == EX
    assert QQ.frac_field(x, y).unify(EX) == EX
    assert EX.unify(QQ.poly_ring(x, y)) == EX
    assert EX.unify(QQ.frac_field(x, y)) == EX

    assert ZZ.poly_ring(x).unify(ZZ) == ZZ.poly_ring(x)
    assert ZZ.poly_ring(x).unify(QQ) == QQ.poly_ring(x)
    assert QQ.poly_ring(x).unify(ZZ) == QQ.poly_ring(x)
    assert QQ.poly_ring(x).unify(QQ) == QQ.poly_ring(x)

    assert ZZ.unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert QQ.unify(ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert ZZ.unify(QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert QQ.unify(QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert ZZ.poly_ring(x, y).unify(ZZ) == ZZ.poly_ring(x, y)
    assert ZZ.poly_ring(x, y).unify(QQ) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).unify(ZZ) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).unify(QQ) == QQ.poly_ring(x, y)

    assert ZZ.unify(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert QQ.unify(ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert ZZ.unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert QQ.unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert ZZ.frac_field(x).unify(ZZ) == ZZ.frac_field(x)
    assert ZZ.frac_field(x).unify(QQ) == EX  # QQ.frac_field(x)
    assert QQ.frac_field(x).unify(ZZ) == EX  # QQ.frac_field(x)
    assert QQ.frac_field(x).unify(QQ) == QQ.frac_field(x)

    assert ZZ.unify(ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert QQ.unify(ZZ.frac_field(x)) == EX  # QQ.frac_field(x)
    assert ZZ.unify(QQ.frac_field(x)) == EX  # QQ.frac_field(x)
    assert QQ.unify(QQ.frac_field(x)) == QQ.frac_field(x)

    assert ZZ.frac_field(x, y).unify(ZZ) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x, y).unify(QQ) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x, y).unify(ZZ) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x, y).unify(QQ) == QQ.frac_field(x, y)

    assert ZZ.unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert QQ.unify(ZZ.frac_field(x, y)) == EX  # QQ.frac_field(x,y)
    assert ZZ.unify(QQ.frac_field(x, y)) == EX  # QQ.frac_field(x,y)
    assert QQ.unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert ZZ.poly_ring(x).unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert ZZ.poly_ring(x).unify(QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert QQ.poly_ring(x).unify(ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert QQ.poly_ring(x).unify(QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert ZZ.poly_ring(x, y).unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x, y)
    assert ZZ.poly_ring(x, y).unify(QQ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).unify(ZZ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).unify(QQ.poly_ring(x)) == QQ.poly_ring(x, y)

    assert ZZ.poly_ring(x).unify(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert ZZ.poly_ring(x).unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x).unify(ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x).unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert ZZ.poly_ring(x, y).unify(ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z)
    assert ZZ.poly_ring(x, y).unify(QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
    assert QQ.poly_ring(x, y).unify(ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
    assert QQ.poly_ring(x, y).unify(QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)

    assert ZZ.frac_field(x).unify(ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert ZZ.frac_field(x).unify(QQ.frac_field(x)) == QQ.frac_field(x)
    assert QQ.frac_field(x).unify(ZZ.frac_field(x)) == QQ.frac_field(x)
    assert QQ.frac_field(x).unify(QQ.frac_field(x)) == QQ.frac_field(x)

    assert ZZ.frac_field(x, y).unify(ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y)
    assert QQ.frac_field(x, y).unify(ZZ.frac_field(x)) == QQ.frac_field(x, y)
    assert QQ.frac_field(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert ZZ.frac_field(x).unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert QQ.frac_field(x).unify(ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert QQ.frac_field(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert ZZ.frac_field(x, y).unify(ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert ZZ.frac_field(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
    assert QQ.frac_field(x, y).unify(ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z)
    assert QQ.frac_field(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)

    assert ZZ.poly_ring(x).unify(ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert ZZ.poly_ring(x).unify(QQ.frac_field(x)) == EX  # QQ.frac_field(x)
    assert QQ.poly_ring(x).unify(ZZ.frac_field(x)) == EX  # QQ.frac_field(x)
    assert QQ.poly_ring(x).unify(QQ.frac_field(x)) == QQ.frac_field(x)

    assert ZZ.poly_ring(x, y).unify(ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert ZZ.poly_ring(x, y).unify(QQ.frac_field(x)) == EX  # QQ.frac_field(x,y)
    assert QQ.poly_ring(x, y).unify(ZZ.frac_field(x)) == EX  # QQ.frac_field(x,y)
    assert QQ.poly_ring(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert ZZ.poly_ring(x).unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert ZZ.poly_ring(x).unify(QQ.frac_field(x, y)) == EX  # QQ.frac_field(x,y)
    assert QQ.poly_ring(x).unify(ZZ.frac_field(x, y)) == EX  # QQ.frac_field(x,y)
    assert QQ.poly_ring(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert ZZ.poly_ring(x, y).unify(ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert ZZ.poly_ring(x, y).unify(QQ.frac_field(x, z)) == EX  # QQ.frac_field(x,y,z)
    assert QQ.poly_ring(x, y).unify(ZZ.frac_field(x, z)) == EX  # QQ.frac_field(x,y,z)
    assert QQ.poly_ring(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)

    assert ZZ.frac_field(x).unify(ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert ZZ.frac_field(x).unify(QQ.poly_ring(x)) == EX  # QQ.frac_field(x)
    assert QQ.frac_field(x).unify(ZZ.poly_ring(x)) == EX  # QQ.frac_field(x)
    assert QQ.frac_field(x).unify(QQ.poly_ring(x)) == QQ.frac_field(x)

    assert ZZ.frac_field(x, y).unify(ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x, y).unify(QQ.poly_ring(x)) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x, y).unify(ZZ.poly_ring(x)) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x, y).unify(QQ.poly_ring(x)) == QQ.frac_field(x, y)

    assert ZZ.frac_field(x).unify(ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x).unify(QQ.poly_ring(x, y)) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x).unify(ZZ.poly_ring(x, y)) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x).unify(QQ.poly_ring(x, y)) == QQ.frac_field(x, y)

    assert ZZ.frac_field(x, y).unify(ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert ZZ.frac_field(x, y).unify(QQ.poly_ring(x, z)) == EX  # QQ.frac_field(x,y,z)
    assert QQ.frac_field(x, y).unify(ZZ.poly_ring(x, z)) == EX  # QQ.frac_field(x,y,z)
    assert QQ.frac_field(x, y).unify(QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)

    alg = QQ.algebraic_field(sqrt(5))

    assert alg.unify(alg[x, y]) == alg[x, y]
    assert alg[x, y].unify(alg) == alg[x, y]

    assert alg.unify(alg.frac_field(x, y)) == alg.frac_field(x, y)
    assert alg.frac_field(x, y).unify(alg) == alg.frac_field(x, y)

    ext = QQ.algebraic_field(sqrt(7))

    raises(NotImplementedError, lambda: alg.unify(ext))

    raises(UnificationFailed, lambda: ZZ.poly_ring(x, y).unify(ZZ, gens=(y, z)))
    raises(UnificationFailed, lambda: ZZ.unify(ZZ.poly_ring(x, y), gens=(y, z)))
Example #31
0
def test_Domain__unify():
    assert ZZ.unify(ZZ) == ZZ
    assert QQ.unify(QQ) == QQ

    assert ZZ.unify(QQ) == QQ
    assert QQ.unify(ZZ) == QQ

    assert EX.unify(EX) == EX

    assert ZZ.unify(EX) == EX
    assert QQ.unify(EX) == EX
    assert EX.unify(ZZ) == EX
    assert EX.unify(QQ) == EX

    assert ZZ.poly_ring('x').unify(EX) == EX
    assert ZZ.frac_field('x').unify(EX) == EX
    assert EX.unify(ZZ.poly_ring('x')) == EX
    assert EX.unify(ZZ.frac_field('x')) == EX

    assert ZZ.poly_ring('x', 'y').unify(EX) == EX
    assert ZZ.frac_field('x', 'y').unify(EX) == EX
    assert EX.unify(ZZ.poly_ring('x', 'y')) == EX
    assert EX.unify(ZZ.frac_field('x', 'y')) == EX

    assert QQ.poly_ring('x').unify(EX) == EX
    assert QQ.frac_field('x').unify(EX) == EX
    assert EX.unify(QQ.poly_ring('x')) == EX
    assert EX.unify(QQ.frac_field('x')) == EX

    assert QQ.poly_ring('x', 'y').unify(EX) == EX
    assert QQ.frac_field('x', 'y').unify(EX) == EX
    assert EX.unify(QQ.poly_ring('x', 'y')) == EX
    assert EX.unify(QQ.frac_field('x', 'y')) == EX

    assert ZZ.poly_ring('x').unify(ZZ) == ZZ.poly_ring('x')
    assert ZZ.poly_ring('x').unify(QQ) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(ZZ) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(QQ) == QQ.poly_ring('x')

    assert ZZ.unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x')
    assert QQ.unify(ZZ.poly_ring('x')) == QQ.poly_ring('x')
    assert ZZ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x')

    assert ZZ.poly_ring('x', 'y').unify(ZZ) == ZZ.poly_ring('x', 'y')
    assert ZZ.poly_ring('x', 'y').unify(QQ) == QQ.poly_ring('x', 'y')
    assert QQ.poly_ring('x', 'y').unify(ZZ) == QQ.poly_ring('x', 'y')
    assert QQ.poly_ring('x', 'y').unify(QQ) == QQ.poly_ring('x', 'y')

    assert ZZ.unify(ZZ.poly_ring('x', 'y')) == ZZ.poly_ring('x', 'y')
    assert QQ.unify(ZZ.poly_ring('x', 'y')) == QQ.poly_ring('x', 'y')
    assert ZZ.unify(QQ.poly_ring('x', 'y')) == QQ.poly_ring('x', 'y')
    assert QQ.unify(QQ.poly_ring('x', 'y')) == QQ.poly_ring('x', 'y')

    assert ZZ.frac_field('x').unify(ZZ) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(QQ) == EX  # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(ZZ) == EX  # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ) == QQ.frac_field('x')

    assert ZZ.unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert QQ.unify(ZZ.frac_field('x')) == EX  # QQ.frac_field('x')
    assert ZZ.unify(QQ.frac_field('x')) == EX  # QQ.frac_field('x')
    assert QQ.unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x', 'y').unify(ZZ) == ZZ.frac_field('x', 'y')
    assert ZZ.frac_field('x', 'y').unify(QQ) == EX  # QQ.frac_field('x','y')
    assert QQ.frac_field('x', 'y').unify(ZZ) == EX  # QQ.frac_field('x','y')
    assert QQ.frac_field('x', 'y').unify(QQ) == QQ.frac_field('x', 'y')

    assert ZZ.unify(ZZ.frac_field('x', 'y')) == ZZ.frac_field('x', 'y')
    assert QQ.unify(ZZ.frac_field('x', 'y')) == EX  # QQ.frac_field('x','y')
    assert ZZ.unify(QQ.frac_field('x', 'y')) == EX  # QQ.frac_field('x','y')
    assert QQ.unify(QQ.frac_field('x', 'y')) == QQ.frac_field('x', 'y')

    assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x')
    assert ZZ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x')

    assert ZZ.poly_ring('x', 'y').unify(ZZ.poly_ring('x')) == ZZ.poly_ring(
        'x', 'y')
    assert ZZ.poly_ring('x', 'y').unify(QQ.poly_ring('x')) == QQ.poly_ring(
        'x', 'y')
    assert QQ.poly_ring('x', 'y').unify(ZZ.poly_ring('x')) == QQ.poly_ring(
        'x', 'y')
    assert QQ.poly_ring('x', 'y').unify(QQ.poly_ring('x')) == QQ.poly_ring(
        'x', 'y')

    assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x', 'y')) == ZZ.poly_ring(
        'x', 'y')
    assert ZZ.poly_ring('x').unify(QQ.poly_ring('x', 'y')) == QQ.poly_ring(
        'x', 'y')
    assert QQ.poly_ring('x').unify(ZZ.poly_ring('x', 'y')) == QQ.poly_ring(
        'x', 'y')
    assert QQ.poly_ring('x').unify(QQ.poly_ring('x', 'y')) == QQ.poly_ring(
        'x', 'y')

    assert ZZ.poly_ring('x', 'y').unify(ZZ.poly_ring('x',
                                                     'z')) == ZZ.poly_ring(
                                                         'x', 'y', 'z')
    assert ZZ.poly_ring('x', 'y').unify(QQ.poly_ring('x',
                                                     'z')) == QQ.poly_ring(
                                                         'x', 'y', 'z')
    assert QQ.poly_ring('x', 'y').unify(ZZ.poly_ring('x',
                                                     'z')) == QQ.poly_ring(
                                                         'x', 'y', 'z')
    assert QQ.poly_ring('x', 'y').unify(QQ.poly_ring('x',
                                                     'z')) == QQ.poly_ring(
                                                         'x', 'y', 'z')

    assert ZZ.frac_field('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')
    assert QQ.frac_field('x').unify(ZZ.frac_field('x')) == QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x', 'y').unify(ZZ.frac_field('x')) == ZZ.frac_field(
        'x', 'y')
    assert ZZ.frac_field('x', 'y').unify(QQ.frac_field('x')) == QQ.frac_field(
        'x', 'y')
    assert QQ.frac_field('x', 'y').unify(ZZ.frac_field('x')) == QQ.frac_field(
        'x', 'y')
    assert QQ.frac_field('x', 'y').unify(QQ.frac_field('x')) == QQ.frac_field(
        'x', 'y')

    assert ZZ.frac_field('x').unify(ZZ.frac_field('x', 'y')) == ZZ.frac_field(
        'x', 'y')
    assert ZZ.frac_field('x').unify(QQ.frac_field('x', 'y')) == QQ.frac_field(
        'x', 'y')
    assert QQ.frac_field('x').unify(ZZ.frac_field('x', 'y')) == QQ.frac_field(
        'x', 'y')
    assert QQ.frac_field('x').unify(QQ.frac_field('x', 'y')) == QQ.frac_field(
        'x', 'y')

    assert ZZ.frac_field('x', 'y').unify(ZZ.frac_field('x',
                                                       'z')) == ZZ.frac_field(
                                                           'x', 'y', 'z')
    assert ZZ.frac_field('x', 'y').unify(QQ.frac_field('x',
                                                       'z')) == QQ.frac_field(
                                                           'x', 'y', 'z')
    assert QQ.frac_field('x', 'y').unify(ZZ.frac_field('x',
                                                       'z')) == QQ.frac_field(
                                                           'x', 'y', 'z')
    assert QQ.frac_field('x', 'y').unify(QQ.frac_field('x',
                                                       'z')) == QQ.frac_field(
                                                           'x', 'y', 'z')

    assert ZZ.poly_ring('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert ZZ.poly_ring('x').unify(
        QQ.frac_field('x')) == EX  # QQ.frac_field('x')
    assert QQ.poly_ring('x').unify(
        ZZ.frac_field('x')) == EX  # QQ.frac_field('x')
    assert QQ.poly_ring('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.poly_ring('x', 'y').unify(ZZ.frac_field('x')) == ZZ.frac_field(
        'x', 'y')
    assert ZZ.poly_ring('x', 'y').unify(
        QQ.frac_field('x')) == EX  # QQ.frac_field('x','y')
    assert QQ.poly_ring('x', 'y').unify(
        ZZ.frac_field('x')) == EX  # QQ.frac_field('x','y')
    assert QQ.poly_ring('x', 'y').unify(QQ.frac_field('x')) == QQ.frac_field(
        'x', 'y')

    assert ZZ.poly_ring('x').unify(ZZ.frac_field('x', 'y')) == ZZ.frac_field(
        'x', 'y')
    assert ZZ.poly_ring('x').unify(QQ.frac_field(
        'x', 'y')) == EX  # QQ.frac_field('x','y')
    assert QQ.poly_ring('x').unify(ZZ.frac_field(
        'x', 'y')) == EX  # QQ.frac_field('x','y')
    assert QQ.poly_ring('x').unify(QQ.frac_field('x', 'y')) == QQ.frac_field(
        'x', 'y')

    assert ZZ.poly_ring('x', 'y').unify(ZZ.frac_field('x',
                                                      'z')) == ZZ.frac_field(
                                                          'x', 'y', 'z')
    assert ZZ.poly_ring('x', 'y').unify(QQ.frac_field(
        'x', 'z')) == EX  # QQ.frac_field('x','y','z')
    assert QQ.poly_ring('x', 'y').unify(ZZ.frac_field(
        'x', 'z')) == EX  # QQ.frac_field('x','y','z')
    assert QQ.poly_ring('x', 'y').unify(QQ.frac_field('x',
                                                      'z')) == QQ.frac_field(
                                                          'x', 'y', 'z')

    assert ZZ.frac_field('x').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(
        QQ.poly_ring('x')) == EX  # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(
        ZZ.poly_ring('x')) == EX  # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ.poly_ring('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x', 'y').unify(ZZ.poly_ring('x')) == ZZ.frac_field(
        'x', 'y')
    assert ZZ.frac_field('x', 'y').unify(
        QQ.poly_ring('x')) == EX  # QQ.frac_field('x','y')
    assert QQ.frac_field('x', 'y').unify(
        ZZ.poly_ring('x')) == EX  # QQ.frac_field('x','y')
    assert QQ.frac_field('x', 'y').unify(QQ.poly_ring('x')) == QQ.frac_field(
        'x', 'y')

    assert ZZ.frac_field('x').unify(ZZ.poly_ring('x', 'y')) == ZZ.frac_field(
        'x', 'y')
    assert ZZ.frac_field('x').unify(QQ.poly_ring(
        'x', 'y')) == EX  # QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(ZZ.poly_ring(
        'x', 'y')) == EX  # QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(QQ.poly_ring('x', 'y')) == QQ.frac_field(
        'x', 'y')

    assert ZZ.frac_field('x', 'y').unify(ZZ.poly_ring('x',
                                                      'z')) == ZZ.frac_field(
                                                          'x', 'y', 'z')
    assert ZZ.frac_field('x', 'y').unify(QQ.poly_ring(
        'x', 'z')) == EX  # QQ.frac_field('x','y','z')
    assert QQ.frac_field('x', 'y').unify(ZZ.poly_ring(
        'x', 'z')) == EX  # QQ.frac_field('x','y','z')
    assert QQ.frac_field('x', 'y').unify(QQ.poly_ring('x',
                                                      'z')) == QQ.frac_field(
                                                          'x', 'y', 'z')

    alg = QQ.algebraic_field(sqrt(5))

    assert alg.unify(alg['x', 'y']) == alg['x', 'y']
    assert alg['x', 'y'].unify(alg) == alg['x', 'y']

    assert alg.unify(alg.frac_field('x', 'y')) == alg.frac_field('x', 'y')
    assert alg.frac_field('x', 'y').unify(alg) == alg.frac_field('x', 'y')

    ext = QQ.algebraic_field(sqrt(7))

    raises(NotImplementedError, "alg.unify(ext)")

    raises(UnificationFailed,
           "ZZ.poly_ring('x','y').unify(ZZ, gens=('y', 'z'))")
    raises(UnificationFailed,
           "ZZ.unify(ZZ.poly_ring('x','y'), gens=('y', 'z'))")
Example #32
0
def test_FractionField_convert():
    K = QQ.frac_field(x)
    assert K.convert(QQ(2, 3), QQ) == K.from_sympy(Rational(2, 3))
    K = QQ.frac_field(x)
    assert K.convert(ZZ(2), ZZ) == K.from_sympy(Integer(2))
Example #33
0
def test_Domain__unify():
    assert ZZ.unify(ZZ) == ZZ
    assert QQ.unify(QQ) == QQ

    assert ZZ.unify(QQ) == QQ
    assert QQ.unify(ZZ) == QQ

    assert EX.unify(EX) == EX

    assert ZZ.unify(EX) == EX
    assert QQ.unify(EX) == EX
    assert EX.unify(ZZ) == EX
    assert EX.unify(QQ) == EX

    assert ZZ.poly_ring('x').unify(EX) == EX
    assert ZZ.frac_field('x').unify(EX) == EX
    assert EX.unify(ZZ.poly_ring('x')) == EX
    assert EX.unify(ZZ.frac_field('x')) == EX

    assert ZZ.poly_ring('x','y').unify(EX) == EX
    assert ZZ.frac_field('x','y').unify(EX) == EX
    assert EX.unify(ZZ.poly_ring('x','y')) == EX
    assert EX.unify(ZZ.frac_field('x','y')) == EX

    assert QQ.poly_ring('x').unify(EX) == EX
    assert QQ.frac_field('x').unify(EX) == EX
    assert EX.unify(QQ.poly_ring('x')) == EX
    assert EX.unify(QQ.frac_field('x')) == EX

    assert QQ.poly_ring('x','y').unify(EX) == EX
    assert QQ.frac_field('x','y').unify(EX) == EX
    assert EX.unify(QQ.poly_ring('x','y')) == EX
    assert EX.unify(QQ.frac_field('x','y')) == EX

    assert ZZ.poly_ring('x').unify(ZZ) == ZZ.poly_ring('x')
    assert ZZ.poly_ring('x').unify(QQ) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(ZZ) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(QQ) == QQ.poly_ring('x')

    assert ZZ.unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x')
    assert QQ.unify(ZZ.poly_ring('x')) == QQ.poly_ring('x')
    assert ZZ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x')

    assert ZZ.poly_ring('x','y').unify(ZZ) == ZZ.poly_ring('x','y')
    assert ZZ.poly_ring('x','y').unify(QQ) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x','y').unify(ZZ) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x','y').unify(QQ) == QQ.poly_ring('x','y')

    assert ZZ.unify(ZZ.poly_ring('x','y')) == ZZ.poly_ring('x','y')
    assert QQ.unify(ZZ.poly_ring('x','y')) == QQ.poly_ring('x','y')
    assert ZZ.unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y')
    assert QQ.unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y')

    assert ZZ.frac_field('x').unify(ZZ) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(QQ) == EX # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(ZZ) == EX # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ) == QQ.frac_field('x')

    assert ZZ.unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert QQ.unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x')
    assert ZZ.unify(QQ.frac_field('x')) == EX # QQ.frac_field('x')
    assert QQ.unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x','y').unify(ZZ) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x','y').unify(QQ) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(ZZ) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(QQ) == QQ.frac_field('x','y')

    assert ZZ.unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y')
    assert QQ.unify(ZZ.frac_field('x','y')) == EX # QQ.frac_field('x','y')
    assert ZZ.unify(QQ.frac_field('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y')

    assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x')
    assert ZZ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x')

    assert ZZ.poly_ring('x','y').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x','y')
    assert ZZ.poly_ring('x','y').unify(QQ.poly_ring('x')) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x','y').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x','y').unify(QQ.poly_ring('x')) == QQ.poly_ring('x','y')

    assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x','y')) == ZZ.poly_ring('x','y')
    assert ZZ.poly_ring('x').unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x').unify(ZZ.poly_ring('x','y')) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x').unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y')

    assert ZZ.poly_ring('x','y').unify(ZZ.poly_ring('x','z')) == ZZ.poly_ring('x','y','z')
    assert ZZ.poly_ring('x','y').unify(QQ.poly_ring('x','z')) == QQ.poly_ring('x','y','z')
    assert QQ.poly_ring('x','y').unify(ZZ.poly_ring('x','z')) == QQ.poly_ring('x','y','z')
    assert QQ.poly_ring('x','y').unify(QQ.poly_ring('x','z')) == QQ.poly_ring('x','y','z')

    assert ZZ.frac_field('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')
    assert QQ.frac_field('x').unify(ZZ.frac_field('x')) == QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x','y').unify(ZZ.frac_field('x')) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(ZZ.frac_field('x')) == QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y')

    assert ZZ.frac_field('x').unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(ZZ.frac_field('x','y')) == QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y')

    assert ZZ.frac_field('x','y').unify(ZZ.frac_field('x','z')) == ZZ.frac_field('x','y','z')
    assert ZZ.frac_field('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z')
    assert QQ.frac_field('x','y').unify(ZZ.frac_field('x','z')) == QQ.frac_field('x','y','z')
    assert QQ.frac_field('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z')

    assert ZZ.poly_ring('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert ZZ.poly_ring('x').unify(QQ.frac_field('x')) == EX # QQ.frac_field('x')
    assert QQ.poly_ring('x').unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x')
    assert QQ.poly_ring('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.poly_ring('x','y').unify(ZZ.frac_field('x')) == ZZ.frac_field('x','y')
    assert ZZ.poly_ring('x','y').unify(QQ.frac_field('x')) == EX # QQ.frac_field('x','y')
    assert QQ.poly_ring('x','y').unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x','y')
    assert QQ.poly_ring('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y')

    assert ZZ.poly_ring('x').unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y')
    assert ZZ.poly_ring('x').unify(QQ.frac_field('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.poly_ring('x').unify(ZZ.frac_field('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.poly_ring('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y')

    assert ZZ.poly_ring('x','y').unify(ZZ.frac_field('x','z')) == ZZ.frac_field('x','y','z')
    assert ZZ.poly_ring('x','y').unify(QQ.frac_field('x','z')) == EX # QQ.frac_field('x','y','z')
    assert QQ.poly_ring('x','y').unify(ZZ.frac_field('x','z')) == EX # QQ.frac_field('x','y','z')
    assert QQ.poly_ring('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z')

    assert ZZ.frac_field('x').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(QQ.poly_ring('x')) == EX # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(ZZ.poly_ring('x')) == EX # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ.poly_ring('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x','y').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x','y').unify(QQ.poly_ring('x')) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(ZZ.poly_ring('x')) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(QQ.poly_ring('x')) == QQ.frac_field('x','y')

    assert ZZ.frac_field('x').unify(ZZ.poly_ring('x','y')) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x').unify(QQ.poly_ring('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(ZZ.poly_ring('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(QQ.poly_ring('x','y')) == QQ.frac_field('x','y')

    assert ZZ.frac_field('x','y').unify(ZZ.poly_ring('x','z')) == ZZ.frac_field('x','y','z')
    assert ZZ.frac_field('x','y').unify(QQ.poly_ring('x','z')) == EX # QQ.frac_field('x','y','z')
    assert QQ.frac_field('x','y').unify(ZZ.poly_ring('x','z')) == EX # QQ.frac_field('x','y','z')
    assert QQ.frac_field('x','y').unify(QQ.poly_ring('x','z')) == QQ.frac_field('x','y','z')

    raises(UnificationFailed, "ZZ.poly_ring('x','y').unify(ZZ, gens=('y', 'z'))")
    raises(UnificationFailed, "ZZ.unify(ZZ.poly_ring('x','y'), gens=('y', 'z'))")
Example #34
0
def test_Domain__unify():
    assert ZZ.unify(ZZ) == ZZ
    assert QQ.unify(QQ) == QQ

    assert ZZ.unify(QQ) == QQ
    assert QQ.unify(ZZ) == QQ

    assert EX.unify(EX) == EX

    assert ZZ.unify(EX) == EX
    assert QQ.unify(EX) == EX
    assert EX.unify(ZZ) == EX
    assert EX.unify(QQ) == EX

    assert ZZ.poly_ring('x').unify(EX) == EX
    assert ZZ.frac_field('x').unify(EX) == EX
    assert EX.unify(ZZ.poly_ring('x')) == EX
    assert EX.unify(ZZ.frac_field('x')) == EX

    assert ZZ.poly_ring('x','y').unify(EX) == EX
    assert ZZ.frac_field('x','y').unify(EX) == EX
    assert EX.unify(ZZ.poly_ring('x','y')) == EX
    assert EX.unify(ZZ.frac_field('x','y')) == EX

    assert QQ.poly_ring('x').unify(EX) == EX
    assert QQ.frac_field('x').unify(EX) == EX
    assert EX.unify(QQ.poly_ring('x')) == EX
    assert EX.unify(QQ.frac_field('x')) == EX

    assert QQ.poly_ring('x','y').unify(EX) == EX
    assert QQ.frac_field('x','y').unify(EX) == EX
    assert EX.unify(QQ.poly_ring('x','y')) == EX
    assert EX.unify(QQ.frac_field('x','y')) == EX

    assert ZZ.poly_ring('x').unify(ZZ) == ZZ.poly_ring('x')
    assert ZZ.poly_ring('x').unify(QQ) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(ZZ) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(QQ) == QQ.poly_ring('x')

    assert ZZ.unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x')
    assert QQ.unify(ZZ.poly_ring('x')) == QQ.poly_ring('x')
    assert ZZ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x')

    assert ZZ.poly_ring('x','y').unify(ZZ) == ZZ.poly_ring('x','y')
    assert ZZ.poly_ring('x','y').unify(QQ) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x','y').unify(ZZ) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x','y').unify(QQ) == QQ.poly_ring('x','y')

    assert ZZ.unify(ZZ.poly_ring('x','y')) == ZZ.poly_ring('x','y')
    assert QQ.unify(ZZ.poly_ring('x','y')) == QQ.poly_ring('x','y')
    assert ZZ.unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y')
    assert QQ.unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y')

    assert ZZ.frac_field('x').unify(ZZ) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(QQ) == EX # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(ZZ) == EX # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ) == QQ.frac_field('x')

    assert ZZ.unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert QQ.unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x')
    assert ZZ.unify(QQ.frac_field('x')) == EX # QQ.frac_field('x')
    assert QQ.unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x','y').unify(ZZ) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x','y').unify(QQ) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(ZZ) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(QQ) == QQ.frac_field('x','y')

    assert ZZ.unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y')
    assert QQ.unify(ZZ.frac_field('x','y')) == EX # QQ.frac_field('x','y')
    assert ZZ.unify(QQ.frac_field('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y')

    assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x')
    assert ZZ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x')
    assert QQ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x')

    assert ZZ.poly_ring('x','y').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x','y')
    assert ZZ.poly_ring('x','y').unify(QQ.poly_ring('x')) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x','y').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x','y').unify(QQ.poly_ring('x')) == QQ.poly_ring('x','y')

    assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x','y')) == ZZ.poly_ring('x','y')
    assert ZZ.poly_ring('x').unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x').unify(ZZ.poly_ring('x','y')) == QQ.poly_ring('x','y')
    assert QQ.poly_ring('x').unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y')

    assert ZZ.poly_ring('x','y').unify(ZZ.poly_ring('x','z')) == ZZ.poly_ring('x','y','z')
    assert ZZ.poly_ring('x','y').unify(QQ.poly_ring('x','z')) == QQ.poly_ring('x','y','z')
    assert QQ.poly_ring('x','y').unify(ZZ.poly_ring('x','z')) == QQ.poly_ring('x','y','z')
    assert QQ.poly_ring('x','y').unify(QQ.poly_ring('x','z')) == QQ.poly_ring('x','y','z')

    assert ZZ.frac_field('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')
    assert QQ.frac_field('x').unify(ZZ.frac_field('x')) == QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x','y').unify(ZZ.frac_field('x')) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(ZZ.frac_field('x')) == QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y')

    assert ZZ.frac_field('x').unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(ZZ.frac_field('x','y')) == QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y')

    assert ZZ.frac_field('x','y').unify(ZZ.frac_field('x','z')) == ZZ.frac_field('x','y','z')
    assert ZZ.frac_field('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z')
    assert QQ.frac_field('x','y').unify(ZZ.frac_field('x','z')) == QQ.frac_field('x','y','z')
    assert QQ.frac_field('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z')

    assert ZZ.poly_ring('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x')
    assert ZZ.poly_ring('x').unify(QQ.frac_field('x')) == EX # QQ.frac_field('x')
    assert QQ.poly_ring('x').unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x')
    assert QQ.poly_ring('x').unify(QQ.frac_field('x')) == QQ.frac_field('x')

    assert ZZ.poly_ring('x','y').unify(ZZ.frac_field('x')) == ZZ.frac_field('x','y')
    assert ZZ.poly_ring('x','y').unify(QQ.frac_field('x')) == EX # QQ.frac_field('x','y')
    assert QQ.poly_ring('x','y').unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x','y')
    assert QQ.poly_ring('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y')

    assert ZZ.poly_ring('x').unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y')
    assert ZZ.poly_ring('x').unify(QQ.frac_field('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.poly_ring('x').unify(ZZ.frac_field('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.poly_ring('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y')

    assert ZZ.poly_ring('x','y').unify(ZZ.frac_field('x','z')) == ZZ.frac_field('x','y','z')
    assert ZZ.poly_ring('x','y').unify(QQ.frac_field('x','z')) == EX # QQ.frac_field('x','y','z')
    assert QQ.poly_ring('x','y').unify(ZZ.frac_field('x','z')) == EX # QQ.frac_field('x','y','z')
    assert QQ.poly_ring('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z')

    assert ZZ.frac_field('x').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x')
    assert ZZ.frac_field('x').unify(QQ.poly_ring('x')) == EX # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(ZZ.poly_ring('x')) == EX # QQ.frac_field('x')
    assert QQ.frac_field('x').unify(QQ.poly_ring('x')) == QQ.frac_field('x')

    assert ZZ.frac_field('x','y').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x','y').unify(QQ.poly_ring('x')) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(ZZ.poly_ring('x')) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x','y').unify(QQ.poly_ring('x')) == QQ.frac_field('x','y')

    assert ZZ.frac_field('x').unify(ZZ.poly_ring('x','y')) == ZZ.frac_field('x','y')
    assert ZZ.frac_field('x').unify(QQ.poly_ring('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(ZZ.poly_ring('x','y')) == EX # QQ.frac_field('x','y')
    assert QQ.frac_field('x').unify(QQ.poly_ring('x','y')) == QQ.frac_field('x','y')

    assert ZZ.frac_field('x','y').unify(ZZ.poly_ring('x','z')) == ZZ.frac_field('x','y','z')
    assert ZZ.frac_field('x','y').unify(QQ.poly_ring('x','z')) == EX # QQ.frac_field('x','y','z')
    assert QQ.frac_field('x','y').unify(ZZ.poly_ring('x','z')) == EX # QQ.frac_field('x','y','z')
    assert QQ.frac_field('x','y').unify(QQ.poly_ring('x','z')) == QQ.frac_field('x','y','z')

    alg = QQ.algebraic_field(sqrt(5))

    assert alg.unify(alg['x','y']) == alg['x','y']
    assert alg['x','y'].unify(alg) == alg['x','y']

    assert alg.unify(alg.frac_field('x','y')) == alg.frac_field('x','y')
    assert alg.frac_field('x','y').unify(alg) == alg.frac_field('x','y')

    ext = QQ.algebraic_field(sqrt(7))

    raises(NotImplementedError, "alg.unify(ext)")

    raises(UnificationFailed, "ZZ.poly_ring('x','y').unify(ZZ, gens=('y', 'z'))")
    raises(UnificationFailed, "ZZ.unify(ZZ.poly_ring('x','y'), gens=('y', 'z'))")
Example #35
0
def test_Domain_unify_composite():
    assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x)

    assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)

    assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x)

    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y)

    assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z)
    assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
    assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
    assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)

    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)

    assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)

    assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)
Example #36
0
def test___eq__():
    assert not QQ['x'] == ZZ['x']
    assert not QQ.frac_field(x) == ZZ.frac_field(x)
Example #37
0
def test___eq__():
    assert not QQ['x'] == ZZ['x']
    assert not QQ.frac_field(x) == ZZ.frac_field(x)
Example #38
0
def test_issue_14433():
    assert (Rational(2, 3) * x in QQ.frac_field(1 / x)) is True
    assert (1 / x in QQ.frac_field(x)) is True
    assert ((x**2 + y**2) in QQ.frac_field(1 / x, 1 / y)) is True
    assert ((x + y) in QQ.frac_field(1 / x, y)) is True
    assert ((x - y) in QQ.frac_field(x, 1 / y)) is True
Example #39
0
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == ZZ
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ[x]) == ZZ[x]
    assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == ZZ
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ[x]) == ZZ[x]
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ[x]) == QQ[x]
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(ZZ_I, F3) == ZZ_I
    assert unify(ZZ_I, ZZ) == ZZ_I
    assert unify(ZZ_I, ZZ_I) == ZZ_I
    assert unify(ZZ_I, QQ) == QQ_I
    assert unify(ZZ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3))
    assert unify(ZZ_I, RR) == CC
    assert unify(ZZ_I, CC) == CC
    assert unify(ZZ_I, ZZ[x]) == ZZ_I[x]
    assert unify(ZZ_I, ZZ_I[x]) == ZZ_I[x]
    assert unify(ZZ_I, ZZ.frac_field(x)) == ZZ_I.frac_field(x)
    assert unify(ZZ_I, ZZ_I.frac_field(x)) == ZZ_I.frac_field(x)
    assert unify(ZZ_I, EX) == EX

    assert unify(QQ_I, F3) == QQ_I
    assert unify(QQ_I, ZZ) == QQ_I
    assert unify(QQ_I, ZZ_I) == QQ_I
    assert unify(QQ_I, QQ) == QQ_I
    assert unify(QQ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3))
    assert unify(QQ_I, RR) == CC
    assert unify(QQ_I, CC) == CC
    assert unify(QQ_I, ZZ[x]) == QQ_I[x]
    assert unify(QQ_I, ZZ_I[x]) == QQ_I[x]
    assert unify(QQ_I, QQ[x]) == QQ_I[x]
    assert unify(QQ_I, QQ_I[x]) == QQ_I[x]
    assert unify(QQ_I, ZZ.frac_field(x)) == QQ_I.frac_field(x)
    assert unify(QQ_I, ZZ_I.frac_field(x)) == QQ_I.frac_field(x)
    assert unify(QQ_I, QQ.frac_field(x)) == QQ_I.frac_field(x)
    assert unify(QQ_I, QQ_I.frac_field(x)) == QQ_I.frac_field(x)
    assert unify(QQ_I, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ[x]) == RR[x]
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX
    assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ[x]) == CC[x]
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    assert unify(ZZ[x], F3) == ZZ[x]
    assert unify(ZZ[x], ZZ) == ZZ[x]
    assert unify(ZZ[x], QQ) == QQ[x]
    assert unify(ZZ[x], ALG) == ALG[x]
    assert unify(ZZ[x], RR) == RR[x]
    assert unify(ZZ[x], CC) == CC[x]
    assert unify(ZZ[x], ZZ[x]) == ZZ[x]
    assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ[x], EX) == EX

    assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ[x]) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX
Example #40
0
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == ZZ
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ[x]) == ZZ[x]
    assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == ZZ
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ[x]) == ZZ[x]
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ[x]) == QQ[x]
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ[x]) == RR[x]
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ[x]) == CC[x]
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    assert unify(ZZ[x], F3) == ZZ[x]
    assert unify(ZZ[x], ZZ) == ZZ[x]
    assert unify(ZZ[x], QQ) == QQ[x]
    assert unify(ZZ[x], ALG) == ALG[x]
    assert unify(ZZ[x], RR) == RR[x]
    assert unify(ZZ[x], CC) == CC[x]
    assert unify(ZZ[x], ZZ[x]) == ZZ[x]
    assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ[x], EX) == EX

    assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ[x]) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX
Example #41
0
def test_Domain__unify():
    assert ZZ.unify(ZZ) == ZZ
    assert QQ.unify(QQ) == QQ

    assert ZZ.unify(QQ) == QQ
    assert QQ.unify(ZZ) == QQ

    assert EX.unify(EX) == EX

    assert ZZ.unify(EX) == EX
    assert QQ.unify(EX) == EX
    assert EX.unify(ZZ) == EX
    assert EX.unify(QQ) == EX

    assert ZZ.poly_ring(x).unify(EX) == EX
    assert ZZ.frac_field(x).unify(EX) == EX
    assert EX.unify(ZZ.poly_ring(x)) == EX
    assert EX.unify(ZZ.frac_field(x)) == EX

    assert ZZ.poly_ring(x, y).unify(EX) == EX
    assert ZZ.frac_field(x, y).unify(EX) == EX
    assert EX.unify(ZZ.poly_ring(x, y)) == EX
    assert EX.unify(ZZ.frac_field(x, y)) == EX

    assert QQ.poly_ring(x).unify(EX) == EX
    assert QQ.frac_field(x).unify(EX) == EX
    assert EX.unify(QQ.poly_ring(x)) == EX
    assert EX.unify(QQ.frac_field(x)) == EX

    assert QQ.poly_ring(x, y).unify(EX) == EX
    assert QQ.frac_field(x, y).unify(EX) == EX
    assert EX.unify(QQ.poly_ring(x, y)) == EX
    assert EX.unify(QQ.frac_field(x, y)) == EX

    assert ZZ.poly_ring(x).unify(ZZ) == ZZ.poly_ring(x)
    assert ZZ.poly_ring(x).unify(QQ) == QQ.poly_ring(x)
    assert QQ.poly_ring(x).unify(ZZ) == QQ.poly_ring(x)
    assert QQ.poly_ring(x).unify(QQ) == QQ.poly_ring(x)

    assert ZZ.unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert QQ.unify(ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert ZZ.unify(QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert QQ.unify(QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert ZZ.poly_ring(x, y).unify(ZZ) == ZZ.poly_ring(x, y)
    assert ZZ.poly_ring(x, y).unify(QQ) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).unify(ZZ) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).unify(QQ) == QQ.poly_ring(x, y)

    assert ZZ.unify(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert QQ.unify(ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert ZZ.unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert QQ.unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert ZZ.frac_field(x).unify(ZZ) == ZZ.frac_field(x)
    assert ZZ.frac_field(x).unify(QQ) == EX  # QQ.frac_field(x)
    assert QQ.frac_field(x).unify(ZZ) == EX  # QQ.frac_field(x)
    assert QQ.frac_field(x).unify(QQ) == QQ.frac_field(x)

    assert ZZ.unify(ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert QQ.unify(ZZ.frac_field(x)) == EX  # QQ.frac_field(x)
    assert ZZ.unify(QQ.frac_field(x)) == EX  # QQ.frac_field(x)
    assert QQ.unify(QQ.frac_field(x)) == QQ.frac_field(x)

    assert ZZ.frac_field(x, y).unify(ZZ) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x, y).unify(QQ) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x, y).unify(ZZ) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x, y).unify(QQ) == QQ.frac_field(x, y)

    assert ZZ.unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert QQ.unify(ZZ.frac_field(x, y)) == EX  # QQ.frac_field(x,y)
    assert ZZ.unify(QQ.frac_field(x, y)) == EX  # QQ.frac_field(x,y)
    assert QQ.unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert ZZ.poly_ring(x).unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert ZZ.poly_ring(x).unify(QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert QQ.poly_ring(x).unify(ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert QQ.poly_ring(x).unify(QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert ZZ.poly_ring(x, y).unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x, y)
    assert ZZ.poly_ring(x, y).unify(QQ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).unify(ZZ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x, y).unify(QQ.poly_ring(x)) == QQ.poly_ring(x, y)

    assert ZZ.poly_ring(x).unify(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert ZZ.poly_ring(x).unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x).unify(ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert QQ.poly_ring(x).unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert ZZ.poly_ring(x, y).unify(ZZ.poly_ring(x,
                                                 z)) == ZZ.poly_ring(x, y, z)
    assert ZZ.poly_ring(x, y).unify(QQ.poly_ring(x,
                                                 z)) == QQ.poly_ring(x, y, z)
    assert QQ.poly_ring(x, y).unify(ZZ.poly_ring(x,
                                                 z)) == QQ.poly_ring(x, y, z)
    assert QQ.poly_ring(x, y).unify(QQ.poly_ring(x,
                                                 z)) == QQ.poly_ring(x, y, z)

    assert ZZ.frac_field(x).unify(ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert ZZ.frac_field(x).unify(QQ.frac_field(x)) == QQ.frac_field(x)
    assert QQ.frac_field(x).unify(ZZ.frac_field(x)) == QQ.frac_field(x)
    assert QQ.frac_field(x).unify(QQ.frac_field(x)) == QQ.frac_field(x)

    assert ZZ.frac_field(x, y).unify(ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y)
    assert QQ.frac_field(x, y).unify(ZZ.frac_field(x)) == QQ.frac_field(x, y)
    assert QQ.frac_field(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert ZZ.frac_field(x).unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert QQ.frac_field(x).unify(ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert QQ.frac_field(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert ZZ.frac_field(x,
                         y).unify(ZZ.frac_field(x,
                                                z)) == ZZ.frac_field(x, y, z)
    assert ZZ.frac_field(x,
                         y).unify(QQ.frac_field(x,
                                                z)) == QQ.frac_field(x, y, z)
    assert QQ.frac_field(x,
                         y).unify(ZZ.frac_field(x,
                                                z)) == QQ.frac_field(x, y, z)
    assert QQ.frac_field(x,
                         y).unify(QQ.frac_field(x,
                                                z)) == QQ.frac_field(x, y, z)

    assert ZZ.poly_ring(x).unify(ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert ZZ.poly_ring(x).unify(QQ.frac_field(x)) == EX  # QQ.frac_field(x)
    assert QQ.poly_ring(x).unify(ZZ.frac_field(x)) == EX  # QQ.frac_field(x)
    assert QQ.poly_ring(x).unify(QQ.frac_field(x)) == QQ.frac_field(x)

    assert ZZ.poly_ring(x, y).unify(ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert ZZ.poly_ring(x, y).unify(
        QQ.frac_field(x)) == EX  # QQ.frac_field(x,y)
    assert QQ.poly_ring(x, y).unify(
        ZZ.frac_field(x)) == EX  # QQ.frac_field(x,y)
    assert QQ.poly_ring(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert ZZ.poly_ring(x).unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert ZZ.poly_ring(x).unify(QQ.frac_field(x,
                                               y)) == EX  # QQ.frac_field(x,y)
    assert QQ.poly_ring(x).unify(ZZ.frac_field(x,
                                               y)) == EX  # QQ.frac_field(x,y)
    assert QQ.poly_ring(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert ZZ.poly_ring(x,
                        y).unify(ZZ.frac_field(x,
                                               z)) == ZZ.frac_field(x, y, z)
    assert ZZ.poly_ring(x, y).unify(QQ.frac_field(
        x, z)) == EX  # QQ.frac_field(x,y,z)
    assert QQ.poly_ring(x, y).unify(ZZ.frac_field(
        x, z)) == EX  # QQ.frac_field(x,y,z)
    assert QQ.poly_ring(x,
                        y).unify(QQ.frac_field(x,
                                               z)) == QQ.frac_field(x, y, z)

    assert ZZ.frac_field(x).unify(ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert ZZ.frac_field(x).unify(QQ.poly_ring(x)) == EX  # QQ.frac_field(x)
    assert QQ.frac_field(x).unify(ZZ.poly_ring(x)) == EX  # QQ.frac_field(x)
    assert QQ.frac_field(x).unify(QQ.poly_ring(x)) == QQ.frac_field(x)

    assert ZZ.frac_field(x, y).unify(ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x, y).unify(
        QQ.poly_ring(x)) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x, y).unify(
        ZZ.poly_ring(x)) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x, y).unify(QQ.poly_ring(x)) == QQ.frac_field(x, y)

    assert ZZ.frac_field(x).unify(ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert ZZ.frac_field(x).unify(QQ.poly_ring(x,
                                               y)) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x).unify(ZZ.poly_ring(x,
                                               y)) == EX  # QQ.frac_field(x,y)
    assert QQ.frac_field(x).unify(QQ.poly_ring(x, y)) == QQ.frac_field(x, y)

    assert ZZ.frac_field(x,
                         y).unify(ZZ.poly_ring(x,
                                               z)) == ZZ.frac_field(x, y, z)
    assert ZZ.frac_field(x, y).unify(QQ.poly_ring(
        x, z)) == EX  # QQ.frac_field(x,y,z)
    assert QQ.frac_field(x, y).unify(ZZ.poly_ring(
        x, z)) == EX  # QQ.frac_field(x,y,z)
    assert QQ.frac_field(x,
                         y).unify(QQ.poly_ring(x,
                                               z)) == QQ.frac_field(x, y, z)

    alg = QQ.algebraic_field(sqrt(5))

    assert alg.unify(alg[x, y]) == alg[x, y]
    assert alg[x, y].unify(alg) == alg[x, y]

    assert alg.unify(alg.frac_field(x, y)) == alg.frac_field(x, y)
    assert alg.frac_field(x, y).unify(alg) == alg.frac_field(x, y)

    ext = QQ.algebraic_field(sqrt(7))

    raises(NotImplementedError, lambda: alg.unify(ext))

    raises(UnificationFailed,
           lambda: ZZ.poly_ring(x, y).unify(ZZ, gens=(y, z)))
    raises(UnificationFailed,
           lambda: ZZ.unify(ZZ.poly_ring(x, y), gens=(y, z)))
Example #42
0
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == ZZ
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ[x]) == ZZ[x]
    assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == ZZ
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ[x]) == ZZ[x]
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ[x]) == QQ[x]
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ[x]) == RR[x]
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX
    assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ[x]) == CC[x]
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    assert unify(ZZ[x], F3) == ZZ[x]
    assert unify(ZZ[x], ZZ) == ZZ[x]
    assert unify(ZZ[x], QQ) == QQ[x]
    assert unify(ZZ[x], ALG) == ALG[x]
    assert unify(ZZ[x], RR) == RR[x]
    assert unify(ZZ[x], CC) == CC[x]
    assert unify(ZZ[x], ZZ[x]) == ZZ[x]
    assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ[x], EX) == EX

    assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ[x]) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX