def test_gruntz_eval_special_fail(): # TODO exponential integral Ei assert gruntz( (Ei(x - exp(-exp(x))) - Ei(x)) *exp(-x)*exp(exp(x))*x, x, oo) == -1 # TODO zeta function series assert gruntz( exp((log(2) + 1)*x) * (zeta(x + exp(-x)) - zeta(x)), x, oo) == -log(2)
def test_issue_14177(): n = Symbol('n', positive=True, integer=True) assert zeta(2*n) == (-1)**(n + 1)*2**(2*n - 1)*pi**(2*n)*bernoulli(2*n)/factorial(2*n) assert zeta(-n) == (-1)**(-n)*bernoulli(n + 1)/(n + 1) n = Symbol('n') assert zeta(2*n) == zeta(2*n) # As sign of z (= 2*n) is not determined
def test_derivatives(): from sympy import Derivative assert zeta(x, a).diff(x) == Derivative(zeta(x, a), x) assert zeta(x, a).diff(a) == -x*zeta(x + 1, a) assert lerchphi(z, s, a).diff(z) == (lerchphi(z, s-1, a) - a*lerchphi(z, s, a))/z assert lerchphi(z, s, a).diff(a) == -s*lerchphi(z, s+1, a) assert polylog(s, z).diff(z) == polylog(s - 1, z)/z b = randcplx() c = randcplx() assert td(zeta(b, x), x) assert td(polylog(b, z), z) assert td(lerchphi(c, b, x), x) assert td(lerchphi(x, b, c), x)
def test_evalf_fast_series_issue998(): # Catalan's constant assert NS( Sum( (-1) ** (n - 1) * 2 ** (8 * n) * (40 * n ** 2 - 24 * n + 3) * fac(2 * n) ** 3 * fac(n) ** 2 / n ** 3 / (2 * n - 1) / fac(4 * n) ** 2, (n, 1, oo), ) / 64, 100, ) == NS(Catalan, 100) astr = NS(zeta(3), 100) assert NS(5 * Sum((-1) ** (n - 1) * fac(n) ** 2 / n ** 3 / fac(2 * n), (n, 1, oo)) / 2, 100) == astr assert ( NS( Sum( (-1) ** (n - 1) * (56 * n ** 2 - 32 * n + 5) / (2 * n - 1) ** 2 * fac(n - 1) ** 3 / fac(3 * n), (n, 1, oo), ) / 4, 100, ) == astr )
def eval(cls, n, m=None): from sympy import zeta if m is S.One: return cls(n) if m is None: m = S.One if m.is_zero: return n if n is S.Infinity and m.is_Number: # TODO: Fix for symbolic values of m if m.is_negative: return S.NaN elif LessThan(m, S.One): return S.Infinity elif StrictGreaterThan(m, S.One): return zeta(m) else: return cls if n.is_Integer and n.is_nonnegative and m.is_Integer: if n == 0: return S.Zero if not m in cls._functions: @recurrence_memo([0]) def f(n, prev): return prev[-1] + S.One / n**m cls._functions[m] = f return cls._functions[m](int(n))
def test_harmonic(): n = Symbol("n") assert harmonic(n, 0) == n assert harmonic(n, 1) == harmonic(n) assert harmonic(0, 1) == 0 assert harmonic(1, 1) == 1 assert harmonic(2, 1) == Rational(3, 2) assert harmonic(3, 1) == Rational(11, 6) assert harmonic(4, 1) == Rational(25, 12) assert harmonic(0, 2) == 0 assert harmonic(1, 2) == 1 assert harmonic(2, 2) == Rational(5, 4) assert harmonic(3, 2) == Rational(49, 36) assert harmonic(4, 2) == Rational(205, 144) assert harmonic(0, 3) == 0 assert harmonic(1, 3) == 1 assert harmonic(2, 3) == Rational(9, 8) assert harmonic(3, 3) == Rational(251, 216) assert harmonic(4, 3) == Rational(2035, 1728) assert harmonic(oo, -1) == S.NaN assert harmonic(oo, 0) == oo assert harmonic(oo, S.Half) == oo assert harmonic(oo, 1) == oo assert harmonic(oo, 2) == (pi**2)/6 assert harmonic(oo, 3) == zeta(3)
def test_evalf_fast_series(): # Euler transformed series for sqrt(1+x) assert NS(Sum( fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100) # Some series for exp(1) estr = NS(E, 100) assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr pistr = NS(pi, 100) # Ramanujan series for pi assert NS(9801/sqrt(8)/Sum(fac( 4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr assert NS(1/Sum( binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr # Machin's formula for pi assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) - 4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr # Apery's constant astr = NS(zeta(3), 100) P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \ n + 12463 assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac( n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 / fac(2*n + 1)**5, (n, 0, oo)), 100) == astr
def test_polylog_expansion(): from sympy import factor, log assert polylog(s, 0) == 0 assert polylog(s, 1) == zeta(s) assert polylog(s, -1) == dirichlet_eta(s) assert myexpand(polylog(1, z), -log(1 + exp_polar(-I*pi)*z)) assert myexpand(polylog(0, z), z/(1 - z)) assert myexpand(polylog(-1, z), z**2/(1 - z)**2 + z/(1 - z)) assert myexpand(polylog(-5, z), None)
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1)+exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}' beta = Function('beta') assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2,inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2,inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2),inv_trig_style="power",fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2,k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3,k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3,k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x+y)) == r"\Re {\left (x + y \right )}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x,y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta{\left (x \right )}'
def test_Sum_doit(): f = Function('f') assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3 assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \ 3*Integral(a**2) assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2) # test nested sum evaluation s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n)) assert 0 == (s.doit() - n*(n+1)*(n-1)).factor() assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == Piecewise((1, And(-oo < n, n < oo)), (0, True)) assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == Piecewise((x, And(-oo < n, n < oo)), (0, True)) assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3 assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \ 3 * Piecewise((1, And(S(1) <= k, k <= 3)), (0, True)) assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \ f(1) + f(2) + f(3) assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \ Sum(Piecewise((f(n), And(Le(0, n), n < oo)), (0, True)), (n, 1, oo)) l = Symbol('l', integer=True, positive=True) assert Sum(f(l) * Sum(KroneckerDelta(m, l), (m, 0, oo)), (l, 1, oo)).doit() == \ Sum(f(l), (l, 1, oo)) # issue 2597 nmax = symbols('N', integer=True, positive=True) pw = Piecewise((1, And(S(1) <= n, n <= nmax)), (0, True)) assert Sum(pw, (n, 1, nmax)).doit() == Sum(pw, (n, 1, nmax)) q, s = symbols('q, s') assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1), (Sum(n**(-2*s), (n, 1, oo)), True)) assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1), (Sum((n + 1)**(-s), (n, 0, oo)), True)) assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise( (zeta(s, q), And(q > 0, s > 1)), (Sum((n + q)**(-s), (n, 0, oo)), True)) assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise( (zeta(s, 2*q), And(2*q > 0, s > 1)), (Sum((n + q)**(-s), (n, q, oo)), True)) assert summation(1/n**2, (n, 1, oo)) == zeta(2) assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo))
def test_polylog_expansion(): from sympy import log assert polylog(s, 0) == 0 assert polylog(s, 1) == zeta(s) assert polylog(s, -1) == -dirichlet_eta(s) assert polylog(s, exp_polar(4*I*pi/3)) == polylog(s, exp(4*I*pi/3)) assert polylog(s, exp_polar(I*pi)/3) == polylog(s, exp(I*pi)/3) assert myexpand(polylog(1, z), -log(1 - z)) assert myexpand(polylog(0, z), z/(1 - z)) assert myexpand(polylog(-1, z), z/(1 - z)**2) assert ((1-z)**3 * expand_func(polylog(-2, z))).simplify() == z*(1 + z) assert myexpand(polylog(-5, z), None)
def test_lerchphi_expansion(): assert myexpand(lerchphi(1, s, a), zeta(s, a)) assert myexpand(lerchphi(z, s, 1), polylog(s, z) / z) # direct summation assert myexpand(lerchphi(z, -1, a), a / (1 - z) + z / (1 - z) ** 2) assert myexpand(lerchphi(z, -3, a), None) # polylog reduction assert myexpand( lerchphi(z, s, S(1) / 2), 2 ** (s - 1) * (polylog(s, sqrt(z)) / sqrt(z) - polylog(s, polar_lift(-1) * sqrt(z)) / sqrt(z)), ) assert myexpand(lerchphi(z, s, 2), -1 / z + polylog(s, z) / z ** 2) assert myexpand(lerchphi(z, s, S(3) / 2), None) assert myexpand(lerchphi(z, s, S(7) / 3), None) assert myexpand(lerchphi(z, s, -S(1) / 3), None) assert myexpand(lerchphi(z, s, -S(5) / 2), None) # hurwitz zeta reduction assert myexpand(lerchphi(-1, s, a), 2 ** (-s) * zeta(s, a / 2) - 2 ** (-s) * zeta(s, (a + 1) / 2)) assert myexpand(lerchphi(I, s, a), None) assert myexpand(lerchphi(-I, s, a), None) assert myexpand(lerchphi(exp(2 * I * pi / 5), s, a), None)
def test_hypersum(): from sympy import simplify, sin, hyper assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x) assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x) assert simplify(summation((-1)**n*x**(2*n+1)/factorial(2*n+1), (n, 3, oo))) \ == -x + sin(x) + x**3/6 - x**5/120 assert summation(1/(n+2)**3, (n, 1, oo)) == \ -S(9)/8 + zeta(3) assert summation(1/n**4, (n, 1, oo)) == pi**4/90 s = summation(x**n*n, (n, -oo, 0)) assert s.is_Piecewise assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2) assert s.args[0].args[1] == (abs(1/x) < 1)
def test_rewriting(): assert dirichlet_eta(x).rewrite(zeta) == (1 - 2 ** (1 - x)) * zeta(x) assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x) / (1 - 2 ** (1 - x)) assert tn(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x) assert tn(zeta(x), zeta(x).rewrite(dirichlet_eta), x) assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a) assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1) * z assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a) assert z * lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z)
def test_hypersum(): from sympy import sin assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x) assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x) assert simplify(summation((-1)**n*x**(2*n + 1) / factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120 assert summation(1/(n + 2)**3, (n, 1, oo)) == -S(9)/8 + zeta(3) assert summation(1/n**4, (n, 1, oo)) == pi**4/90 s = summation(x**n*n, (n, -oo, 0)) assert s.is_Piecewise assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2) assert s.args[0].args[1] == (abs(1/x) < 1) m = Symbol('n', integer=True, positive=True) assert summation(binomial(m, k), (k, 0, m)) == 2**m
def test_hypersum(): from sympy import simplify, sin, hyper assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x) assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x) assert simplify(summation((-1)**n*x**(2*n + 1) / factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120 assert summation(1/(n + 2)**3, (n, 1, oo)) == -S(9)/8 + zeta(3) assert summation(1/n**4, (n, 1, oo)) == pi**4/90 s = summation(x**n*n, (n, -oo, 0)) assert s.is_Piecewise assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2) assert s.args[0].args[1] == (abs(1/x) < 1) m = Symbol('n', integer=True, positive=True) assert summation(binomial(m, k), (k, 0, m)) == 2**m
def test_rewriting(): assert dirichlet_eta(x).rewrite(zeta) == (1 - 2**(1 - x)) * zeta(x) assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x) / (1 - 2**(1 - x)) assert tn(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x) assert tn(zeta(x), zeta(x).rewrite(dirichlet_eta), x) assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a) assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1) * z assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a) assert z * lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z)
def test_euler_maclaurin(): # Exact polynomial sums with E-M def check_exact(f, a, b, m, n): A = Sum(f, (k, a, b)) s, e = A.euler_maclaurin(m, n) assert (e == 0) and (s.expand() == A.doit()) check_exact(k**4, a, b, 0, 2) check_exact(k**4 + 2*k, a, b, 1, 2) check_exact(k**4 + k**2, a, b, 1, 5) check_exact(k**5, 2, 6, 1, 2) check_exact(k**5, 2, 6, 1, 3) # Not exact assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0 # Numerical test for m, n in [(2, 4), (2, 20), (10, 20), (18, 20)]: A = Sum(1/k**3, (k, 1, oo)) s, e = A.euler_maclaurin(m, n) assert abs((s - zeta(3)).evalf()) < e.evalf()
def test_moment_generating_functions(): t = S('t') geometric_mgf = moment_generating_function(Geometric('g', S(1)/2))(t) assert geometric_mgf.diff(t).subs(t, 0) == 2 logarithmic_mgf = moment_generating_function(Logarithmic('l', S(1)/2))(t) assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2) negative_binomial_mgf = moment_generating_function(NegativeBinomial('n', 5, S(1)/3))(t) assert negative_binomial_mgf.diff(t).subs(t, 0) == S(5)/2 poisson_mgf = moment_generating_function(Poisson('p', 5))(t) assert poisson_mgf.diff(t).subs(t, 0) == 5 yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t) assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == S(3)/2 zeta_mgf = moment_generating_function(Zeta('z', 5))(t) assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5))
def test_euler_maclaurin(): # Exact polynomial sums with E-M def check_exact(f, a, b, m, n): A = Sum(f, (k, a, b)) s, e = A.euler_maclaurin(m, n) assert (e == 0) and (s.expand() == A.doit()) check_exact(k**4, a, b, 0, 2) check_exact(k**4 + 2*k, a, b, 1, 2) check_exact(k**4 + k**2, a, b, 1, 5) check_exact(k**5, 2, 6, 1, 2) check_exact(k**5, 2, 6, 1, 3) assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0) # Not exact assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0 # Numerical test for m, n in [(2, 4), (2, 20), (10, 20), (18, 20)]: A = Sum(1/k**3, (k, 1, oo)) s, e = A.euler_maclaurin(m, n) assert abs((s - zeta(3)).evalf()) < e.evalf() raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin())
def test_evalf_fast_series(): # Euler transformed series for sqrt(1+x) assert NS(Sum(fac(2 * n + 1) / fac(n)**2 / 2**(3 * n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100) # Some series for exp(1) estr = NS(E, 100) assert NS(Sum(1 / fac(n), (n, 0, oo)), 100) == estr assert NS(1 / Sum((1 - 2 * n) / fac(2 * n), (n, 0, oo)), 100) == estr assert NS(Sum((2 * n + 1) / fac(2 * n), (n, 0, oo)), 100) == estr assert NS( Sum((4 * n + 3) / 2**(2 * n + 1) / fac(2 * n + 1), (n, 0, oo))**2, 100) == estr pistr = NS(pi, 100) # Ramanujan series for pi assert NS( 9801 / sqrt(8) / Sum( fac(4 * n) * (1103 + 26390 * n) / fac(n)**4 / 396**(4 * n), (n, 0, oo)), 100) == pistr assert NS( 1 / Sum( binomial(2 * n, n)**3 * (42 * n + 5) / 2**(12 * n + 4), (n, 0, oo)), 100) == pistr # Machin's formula for pi assert NS( 16 * Sum((-1)**n / (2 * n + 1) / 5**(2 * n + 1), (n, 0, oo)) - 4 * Sum( (-1)**n / (2 * n + 1) / 239**(2 * n + 1), (n, 0, oo)), 100) == pistr # Apery's constant astr = NS(zeta(3), 100) P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \ n + 12463 assert NS( Sum((-1)**n * P / 24 * (fac(2 * n + 1) * fac(2 * n) * fac(n))**3 / fac(3 * n + 2) / fac(4 * n + 3)**3, (n, 0, oo)), 100) == astr assert NS( Sum((-1)**n * (205 * n**2 + 250 * n + 77) / 64 * fac(n)**10 / fac(2 * n + 1)**5, (n, 0, oo)), 100) == astr
def test_trigamma(): assert trigamma(nan) == nan assert trigamma(oo) == 0 assert trigamma(1) == pi**2 / 6 assert trigamma(2) == pi**2 / 6 - 1 assert trigamma(3) == pi**2 / 6 - Rational(5, 4) assert trigamma(x, evaluate=False).rewrite(zeta) == zeta(2, x) assert trigamma(x, evaluate=False).rewrite(harmonic) == \ trigamma(x).rewrite(polygamma).rewrite(harmonic) assert trigamma(x, evaluate=False).fdiff() == polygamma(2, x) assert trigamma(x, evaluate=False).is_real is None assert trigamma(x, evaluate=False).is_positive is None assert trigamma(x, evaluate=False).is_negative is None assert trigamma(x, evaluate=False).rewrite(polygamma) == polygamma(1, x)
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}' beta = Function('beta') assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re {\left (x + y \right )}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}' # Test latex printing of function names with "_" assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift(0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
def pdf(self, k): s = self.s return 1 / (k**s * zeta(s))
def _characteristic_function(self, t): return polylog(self.s, exp(I * t)) / zeta(self.s)
def test_issue_10475(): a = Symbol("a", extended_real=True) b = Symbol("b", extended_positive=True) s = Symbol("s", zero=False) assert zeta(2 + I).is_finite assert zeta(1).is_finite is False assert zeta(x).is_finite is None assert zeta(x + I).is_finite is None assert zeta(a).is_finite is None assert zeta(b).is_finite is None assert zeta(-b).is_finite is True assert zeta(b ** 2 - 2 * b + 1).is_finite is None assert zeta(a + I).is_finite is True assert zeta(b + 1).is_finite is True assert zeta(s + 1).is_finite is True
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function("f") assert latex(f(x)) == "\\operatorname{f}{\\left (x \\right )}" beta = Function("beta") assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"\sin {2 x^{2}}" assert latex(sin(x ** 2), fold_func_brackets=True) == r"\sin {x^{2}}" assert latex(asin(x) ** 2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x) ** 2, inv_trig_style="full") == r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x) ** 2, inv_trig_style="power") == r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x ** 3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y) ** 2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x ** 3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y) ** 2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re{x} + \Re{y}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r"\gamma\left(x, y\right)" assert latex(uppergamma(x, y)) == r"\Gamma\left(x, y\right)" assert latex(cot(x)) == r"\cot{\left (x \right )}" assert latex(coth(x)) == r"\coth{\left (x \right )}" assert latex(re(x)) == r"\Re{x}" assert latex(im(x)) == r"\Im{x}" assert latex(root(x, y)) == r"x^{\frac{1}{y}}" assert latex(arg(x)) == r"\arg{\left (x \right )}" assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x) ** 2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y) ** 2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x) ** 2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex(polylog(x, y) ** 2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n) ** 2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(Ei(x)) == r"\operatorname{Ei}{\left (x \right )}" assert latex(Ei(x) ** 2) == r"\operatorname{Ei}^{2}{\left (x \right )}" assert latex(expint(x, y) ** 2) == r"\operatorname{E}_{x}^{2}\left(y\right)" assert latex(Shi(x) ** 2) == r"\operatorname{Shi}^{2}{\left (x \right )}" assert latex(Si(x) ** 2) == r"\operatorname{Si}^{2}{\left (x \right )}" assert latex(Ci(x) ** 2) == r"\operatorname{Ci}^{2}{\left (x \right )}" assert latex(Chi(x) ** 2) == r"\operatorname{Chi}^{2}{\left (x \right )}" assert latex(jacobi(n, a, b, x)) == r"P_{n}^{\left(a,b\right)}\left(x\right)" assert latex(jacobi(n, a, b, x) ** 2) == r"\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}" assert latex(gegenbauer(n, a, x)) == r"C_{n}^{\left(a\right)}\left(x\right)" assert latex(gegenbauer(n, a, x) ** 2) == r"\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}" assert latex(chebyshevt(n, x)) == r"T_{n}\left(x\right)" assert latex(chebyshevt(n, x) ** 2) == r"\left(T_{n}\left(x\right)\right)^{2}" assert latex(chebyshevu(n, x)) == r"U_{n}\left(x\right)" assert latex(chebyshevu(n, x) ** 2) == r"\left(U_{n}\left(x\right)\right)^{2}" assert latex(legendre(n, x)) == r"P_{n}\left(x\right)" assert latex(legendre(n, x) ** 2) == r"\left(P_{n}\left(x\right)\right)^{2}" assert latex(assoc_legendre(n, a, x)) == r"P_{n}^{\left(a\right)}\left(x\right)" assert latex(assoc_legendre(n, a, x) ** 2) == r"\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}" assert latex(laguerre(n, x)) == r"L_{n}\left(x\right)" assert latex(laguerre(n, x) ** 2) == r"\left(L_{n}\left(x\right)\right)^{2}" assert latex(assoc_laguerre(n, a, x)) == r"L_{n}^{\left(a\right)}\left(x\right)" assert latex(assoc_laguerre(n, a, x) ** 2) == r"\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}" assert latex(hermite(n, x)) == r"H_{n}\left(x\right)" assert latex(hermite(n, x) ** 2) == r"\left(H_{n}\left(x\right)\right)^{2}" # Test latex printing of function names with "_" assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift(0) ** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
def test_polygamma(): from sympy import I assert polygamma(n, nan) == nan assert polygamma(0, oo) == oo assert polygamma(0, -oo) == oo assert polygamma(0, I*oo) == oo assert polygamma(0, -I*oo) == oo assert polygamma(1, oo) == 0 assert polygamma(5, oo) == 0 assert polygamma(0, -9) == zoo assert polygamma(0, -9) == zoo assert polygamma(0, -1) == zoo assert polygamma(0, 0) == zoo assert polygamma(0, 1) == -EulerGamma assert polygamma(0, 7) == Rational(49, 20) - EulerGamma assert polygamma(1, 1) == pi**2/6 assert polygamma(1, 2) == pi**2/6 - 1 assert polygamma(1, 3) == pi**2/6 - Rational(5, 4) assert polygamma(3, 1) == pi**4 / 15 assert polygamma(3, 5) == 6*(Rational(-22369, 20736) + pi**4/90) assert polygamma(5, 1) == 8 * pi**6 / 63 def t(m, n): x = S(m)/n r = polygamma(0, x) if r.has(polygamma): return False return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10 assert t(1, 2) assert t(3, 2) assert t(-1, 2) assert t(1, 4) assert t(-3, 4) assert t(1, 3) assert t(4, 3) assert t(3, 4) assert t(2, 3) assert polygamma(0, x).rewrite(zeta) == polygamma(0, x) assert polygamma(1, x).rewrite(zeta) == zeta(2, x) assert polygamma(2, x).rewrite(zeta) == -2*zeta(3, x) assert polygamma(3, 7*x).diff(x) == 7*polygamma(4, 7*x) assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma assert polygamma(2, x).rewrite(harmonic) == 2*harmonic(x - 1, 3) - 2*zeta(3) ni = Symbol("n", integer=True) assert polygamma(ni, x).rewrite(harmonic) == (-1)**(ni + 1)*(-harmonic(x - 1, ni + 1) + zeta(ni + 1))*factorial(ni) # Polygamma of non-negative integer order is unbranched: from sympy import exp_polar k = Symbol('n', integer=True, nonnegative=True) assert polygamma(k, exp_polar(2*I*pi)*x) == polygamma(k, x) # but negative integers are branched! k = Symbol('n', integer=True) assert polygamma(k, exp_polar(2*I*pi)*x).args == (k, exp_polar(2*I*pi)*x) # Polygamma of order -1 is loggamma: assert polygamma(-1, x) == loggamma(x) # But smaller orders are iterated integrals and don't have a special name assert polygamma(-2, x).func is polygamma # Test a bug assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)
def _moment_generating_function(self, t): return polylog(self.s, exp(t)) / zeta(self.s)
def tetragamma_at_1_coefficient(k): return ((-1)**(k + 1) * (k + 1) * (k + 2) * zeta(k + 3)).evalf(decimal_precision, maxn=evalf_inner_precision)
def digamma_at_2_coefficient(k): if k == 0: return 0.0 return ((-1)**(k + 1)*(zeta(k + 1) - 1)).evalf(decimal_precision, maxn=evalf_inner_precision)
def digamma_at_1_coefficient(k): if k == 0: return digamma(1).evalf(decimal_precision, maxn=evalf_inner_precision) return ((-1)**(k + 1) * zeta(k + 1)).evalf(decimal_precision, maxn=evalf_inner_precision)
def test_zeta_series(): assert zeta(x, a).series(a, 0, 2) == zeta(x, 0) - x * a * zeta(x + 1, 0) + O(a ** 2)
def test_issue_10475(): a = Symbol("a", real=True) b = Symbol("b", positive=True) s = Symbol("s", zero=False) assert zeta(2 + I).is_finite assert zeta(1).is_finite is False assert zeta(x).is_finite is None assert zeta(x + I).is_finite is None assert zeta(a).is_finite is None assert zeta(b).is_finite is None assert zeta(-b).is_finite is True assert zeta(b ** 2 - 2 * b + 1).is_finite is None assert zeta(a + I).is_finite is True assert zeta(b + 1).is_finite is True assert zeta(s + 1).is_finite is True
def test_polygamma(): from sympy import I assert polygamma(n, nan) is nan assert polygamma(0, oo) is oo assert polygamma(0, -oo) is oo assert polygamma(0, I * oo) is oo assert polygamma(0, -I * oo) is oo assert polygamma(1, oo) == 0 assert polygamma(5, oo) == 0 assert polygamma(0, -9) is zoo assert polygamma(0, -9) is zoo assert polygamma(0, -1) is zoo assert polygamma(0, 0) is zoo assert polygamma(0, 1) == -EulerGamma assert polygamma(0, 7) == Rational(49, 20) - EulerGamma assert polygamma(1, 1) == pi**2 / 6 assert polygamma(1, 2) == pi**2 / 6 - 1 assert polygamma(1, 3) == pi**2 / 6 - Rational(5, 4) assert polygamma(3, 1) == pi**4 / 15 assert polygamma(3, 5) == 6 * (Rational(-22369, 20736) + pi**4 / 90) assert polygamma(5, 1) == 8 * pi**6 / 63 assert polygamma(1, S.Half) == pi**2 / 2 assert polygamma(2, S.Half) == -14 * zeta(3) assert polygamma(11, S.Half) == 176896 * pi**12 def t(m, n): x = S(m) / n r = polygamma(0, x) if r.has(polygamma): return False return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10 assert t(1, 2) assert t(3, 2) assert t(-1, 2) assert t(1, 4) assert t(-3, 4) assert t(1, 3) assert t(4, 3) assert t(3, 4) assert t(2, 3) assert t(123, 5) assert polygamma(0, x).rewrite(zeta) == polygamma(0, x) assert polygamma(1, x).rewrite(zeta) == zeta(2, x) assert polygamma(2, x).rewrite(zeta) == -2 * zeta(3, x) assert polygamma(I, 2).rewrite(zeta) == polygamma(I, 2) n1 = Symbol('n1') n2 = Symbol('n2', real=True) n3 = Symbol('n3', integer=True) n4 = Symbol('n4', positive=True) n5 = Symbol('n5', positive=True, integer=True) assert polygamma(n1, x).rewrite(zeta) == polygamma(n1, x) assert polygamma(n2, x).rewrite(zeta) == polygamma(n2, x) assert polygamma(n3, x).rewrite(zeta) == polygamma(n3, x) assert polygamma(n4, x).rewrite(zeta) == polygamma(n4, x) assert polygamma( n5, x).rewrite(zeta) == (-1)**(n5 + 1) * factorial(n5) * zeta(n5 + 1, x) assert polygamma(3, 7 * x).diff(x) == 7 * polygamma(4, 7 * x) assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma assert polygamma( 2, x).rewrite(harmonic) == 2 * harmonic(x - 1, 3) - 2 * zeta(3) ni = Symbol("n", integer=True) assert polygamma( ni, x).rewrite(harmonic) == (-1)**(ni + 1) * (-harmonic(x - 1, ni + 1) + zeta(ni + 1)) * factorial(ni) # Polygamma of non-negative integer order is unbranched: from sympy import exp_polar k = Symbol('n', integer=True, nonnegative=True) assert polygamma(k, exp_polar(2 * I * pi) * x) == polygamma(k, x) # but negative integers are branched! k = Symbol('n', integer=True) assert polygamma(k, exp_polar(2 * I * pi) * x).args == (k, exp_polar(2 * I * pi) * x) # Polygamma of order -1 is loggamma: assert polygamma(-1, x) == loggamma(x) # But smaller orders are iterated integrals and don't have a special name assert polygamma(-2, x).func is polygamma # Test a bug assert polygamma(0, -x).expand(func=True) == polygamma(0, -x) assert polygamma(2, 2.5).is_positive == False assert polygamma(2, -2.5).is_positive == False assert polygamma(3, 2.5).is_positive == True assert polygamma(3, -2.5).is_positive is True assert polygamma(-2, -2.5).is_positive is None assert polygamma(-3, -2.5).is_positive is None assert polygamma(2, 2.5).is_negative == True assert polygamma(3, 2.5).is_negative == False assert polygamma(3, -2.5).is_negative == False assert polygamma(2, -2.5).is_negative is True assert polygamma(-2, -2.5).is_negative is None assert polygamma(-3, -2.5).is_negative is None assert polygamma(I, 2).is_positive is None assert polygamma(I, 3).is_negative is None # issue 17350 assert polygamma(pi, 3).evalf() == polygamma(pi, 3) assert (I*polygamma(I, pi)).as_real_imag() == \ (-im(polygamma(I, pi)), re(polygamma(I, pi))) assert (tanh(polygamma(I, 1))).rewrite(exp) == \ (exp(polygamma(I, 1)) - exp(-polygamma(I, 1)))/(exp(polygamma(I, 1)) + exp(-polygamma(I, 1))) assert (I / polygamma(I, 4)).rewrite(exp) == \ I*sqrt(re(polygamma(I, 4))**2 + im(polygamma(I, 4))**2)\ /((re(polygamma(I, 4)) + I*im(polygamma(I, 4)))*Abs(polygamma(I, 4))) assert unchanged(polygamma, 2.3, 1.0) # issue 12569 assert unchanged(im, polygamma(0, I)) assert polygamma(Symbol('a', positive=True), Symbol( 'b', positive=True)).is_real is True assert polygamma(0, I).is_real is None
def test_issue_10475(): a = Symbol('a', real=True) b = Symbol('b', positive=True) s = Symbol('s', zero=False) assert zeta(2 + I).is_finite assert zeta(1).is_finite is False assert zeta(x).is_finite is None assert zeta(x + I).is_finite is None assert zeta(a).is_finite is None assert zeta(b).is_finite is None assert zeta(-b).is_finite is True assert zeta(b**2 - 2 * b + 1).is_finite is None assert zeta(a + I).is_finite is True assert zeta(b + 1).is_finite is True assert zeta(s + 1).is_finite is True
def test_zeta(): assert zeta(nan) == nan assert zeta(x, nan) == nan assert zeta(0) == Rational(-1,2) assert zeta(0, x) == Rational(1,2) - x assert zeta(1) == zoo assert zeta(1, 2) == zoo assert zeta(1, -7) == zoo assert zeta(1, x) == zoo assert zeta(2, 0) == pi**2/6 assert zeta(2, 1) == pi**2/6 assert zeta(2) == pi**2/6 assert zeta(4) == pi**4/90 assert zeta(6) == pi**6/945 assert zeta(2, 2) == pi**2/6 - 1 assert zeta(4, 3) == pi**4/90 - Rational(17, 16) assert zeta(6, 4) == pi**6/945 - Rational(47449, 46656) assert zeta(2, -2) == pi**2/6 + Rational(5, 4) assert zeta(4, -3) == pi**4/90 + Rational(1393, 1296) assert zeta(6, -4) == pi**6/945 + Rational(3037465, 2985984) assert zeta(-1) == -Rational(1, 12) assert zeta(-2) == 0 assert zeta(-3) == Rational(1, 120) assert zeta(-4) == 0 assert zeta(-5) == -Rational(1, 252) assert zeta(-1, 3) == -Rational(37, 12) assert zeta(-1, 7) == -Rational(253, 12) assert zeta(-1, -4) == Rational(119, 12) assert zeta(-1, -9) == Rational(539, 12) assert zeta(-4, 3) == -17 assert zeta(-4, -8) == 8772 assert zeta(0, 0) == -Rational(1, 2) assert zeta(0, 1) == -Rational(1, 2) assert zeta(0, -1) == Rational(1, 2) assert zeta(0, 2) == -Rational(3, 2) assert zeta(0, -2) == Rational(3, 2) assert zeta(3).evalf(20).epsilon_eq(Real("1.2020569031595942854",20), 1e-19)
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}' beta = Function('beta') assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re {\left (x + y \right )}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}' beta = Function('beta') assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re{x} + \Re{y}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}' assert latex(jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi( n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex(gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer( n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex(chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex(chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex(assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre( n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex(assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre( n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' # Test latex printing of function names with "_" assert latex( polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift(0)** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
def test_polygamma(): from sympy import I assert polygamma(n, nan) == nan assert polygamma(0, oo) == oo assert polygamma(0, -oo) == oo assert polygamma(0, I * oo) == oo assert polygamma(0, -I * oo) == oo assert polygamma(1, oo) == 0 assert polygamma(5, oo) == 0 assert polygamma(0, -9) == zoo assert polygamma(0, -9) == zoo assert polygamma(0, -1) == zoo assert polygamma(0, 0) == zoo assert polygamma(0, 1) == -EulerGamma assert polygamma(0, 7) == Rational(49, 20) - EulerGamma assert polygamma(1, 1) == pi**2 / 6 assert polygamma(1, 2) == pi**2 / 6 - 1 assert polygamma(1, 3) == pi**2 / 6 - Rational(5, 4) assert polygamma(3, 1) == pi**4 / 15 assert polygamma(3, 5) == 6 * (Rational(-22369, 20736) + pi**4 / 90) assert polygamma(5, 1) == 8 * pi**6 / 63 def t(m, n): x = S(m) / n r = polygamma(0, x) if r.has(polygamma): return False return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10 assert t(1, 2) assert t(3, 2) assert t(-1, 2) assert t(1, 4) assert t(-3, 4) assert t(1, 3) assert t(4, 3) assert t(3, 4) assert t(2, 3) assert polygamma(0, x).rewrite(zeta) == polygamma(0, x) assert polygamma(1, x).rewrite(zeta) == zeta(2, x) assert polygamma(2, x).rewrite(zeta) == -2 * zeta(3, x) assert polygamma(3, 7 * x).diff(x) == 7 * polygamma(4, 7 * x) assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma assert polygamma( 2, x).rewrite(harmonic) == 2 * harmonic(x - 1, 3) - 2 * zeta(3) ni = Symbol("n", integer=True) assert polygamma( ni, x).rewrite(harmonic) == (-1)**(ni + 1) * (-harmonic(x - 1, ni + 1) + zeta(ni + 1)) * factorial(ni) # Polygamma of non-negative integer order is unbranched: from sympy import exp_polar k = Symbol('n', integer=True, nonnegative=True) assert polygamma(k, exp_polar(2 * I * pi) * x) == polygamma(k, x) # but negative integers are branched! k = Symbol('n', integer=True) assert polygamma(k, exp_polar(2 * I * pi) * x).args == (k, exp_polar(2 * I * pi) * x) # Polygamma of order -1 is loggamma: assert polygamma(-1, x) == loggamma(x) # But smaller orders are iterated integrals and don't have a special name assert polygamma(-2, x).func is polygamma # Test a bug assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)
def digamma_at_2_coefficient(k): if k == 0: return S(0) return ((-1)**(k + 1) * (zeta(k + 1) - 1))
def tetragamma_at_1_coefficient(k): return ((-1)**(k + 1) * (k + 1) * (k + 2) * zeta(k + 3))
def _characteristic_function(self, t): return polylog(self.s, exp(I*t)) / zeta(self.s)
def test_zeta(): assert str(zeta(3)) == "zeta(3)"
def series_small_a_small_b(): """Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5. Be aware of cancellation of poles in b=0 of digamma(b)/Gamma(b) and polygamma functions. digamma(b)/Gamma(b) = -1 - 2*M_EG*b + O(b^2) digamma(b)^2/Gamma(b) = 1/b + 3*M_EG + b*(-5/12*PI^2+7/2*M_EG^2) + O(b^2) polygamma(1, b)/Gamma(b) = 1/b + M_EG + b*(1/12*PI^2 + 1/2*M_EG^2) + O(b^2) and so on. """ order = 5 a, b, x, k = symbols("a b x k") M_PI, M_EG, M_Z3 = symbols("M_PI M_EG M_Z3") c_subs = {pi: M_PI, EulerGamma: M_EG, zeta(3): M_Z3} A = [] # terms with a X = [] # terms with x B = [] # terms with b (polygammas expanded) C = [] # terms that generate B # Phi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i]) # B[0] = 1 # B[k] = sum(C[k] * b**k/k!, k=0..) # Note: C[k] can be obtained from a series expansion of 1/gamma(b). expression = gamma(b)/sympy.exp(x) * \ Sum(x**k/factorial(k)/gamma(a*k+b), (k, 0, S.Infinity)) # nth term of taylor series in a=0: a^n/n! * (d^n Phi(a, b, x)/da^n at a=0) for n in range(0, order + 1): term = expression.diff(a, n).subs(a, 0).simplify().doit() # set the whole bracket involving polygammas to 1 x_part = (term.subs(polygamma(0, b), 1).replace(polygamma, lambda *args: 0)) # sign convetion: x part always positive x_part *= (-1)**n # expansion of polygamma part with 1/gamma(b) pg_part = term / x_part / gamma(b) if n >= 1: # Note: highest term is digamma^n pg_part = pg_part.replace( polygamma, lambda k, x: pg_series(k, x, order + 1 + n)) pg_part = (pg_part.series(b, 0, n=order + 1 - n).removeO().subs( polygamma(2, 1), -2 * zeta(3)).simplify()) A.append(a**n / factorial(n)) X.append(horner(x_part)) B.append(pg_part) # Calculate C and put in the k! C = sympy.Poly(B[1].subs(c_subs), b).coeffs() C.reverse() for i in range(len(C)): C[i] = (C[i] * factorial(i)).simplify() s = "Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5." s += "\nPhi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i], i=0..5)\n" s += "B[0] = 1\n" s += "B[i] = sum(C[k+i-1] * b**k/k!, k=0..)\n" s += "\nM_PI = pi" s += "\nM_EG = EulerGamma" s += "\nM_Z3 = zeta(3)" for name, c in zip(['A', 'X'], [A, X]): for i in range(len(c)): s += f"\n{name}[{i}] = " s += str(c[i]) # For C, do also compute the values numerically for i in range(len(C)): s += f"\n# C[{i}] = " s += str(C[i]) s += f"\nC[{i}] = " s += str(C[i].subs({ M_EG: EulerGamma, M_PI: pi, M_Z3: zeta(3) }).evalf(17)) # Does B have the assumed structure? s += "\n\nTest if B[i] does have the assumed structure." s += "\nC[i] are derived from B[1] allone." s += "\nTest B[2] == C[1] + b*C[2] + b^2/2*C[3] + b^3/6*C[4] + .." test = sum([b**k / factorial(k) * C[k + 1] for k in range(order - 1)]) test = (test - B[2].subs(c_subs)).simplify() s += f"\ntest successful = {test==S(0)}" s += "\nTest B[3] == C[2] + b*C[3] + b^2/2*C[4] + .." test = sum([b**k / factorial(k) * C[k + 2] for k in range(order - 2)]) test = (test - B[3].subs(c_subs)).simplify() s += f"\ntest successful = {test==S(0)}" return s
def digamma_at_1_coefficient(k): """Reference: https://dlmf.nist.gov/5.7#E4""" if k == 0: return digamma(1) return ((-1)**(k + 1) * zeta(k + 1))
def test_zeta(): assert zeta(nan) == nan assert zeta(x, nan) == nan assert zeta(0) == Rational(-1,2) assert zeta(0, x) == Rational(1,2) - x assert zeta(1) == zoo assert zeta(1, 2) == zoo assert zeta(1, -7) == zoo assert zeta(1, x) == zoo assert zeta(2, 0) == pi**2/6 assert zeta(2, 1) == pi**2/6 assert zeta(2) == pi**2/6 assert zeta(4) == pi**4/90 assert zeta(6) == pi**6/945 assert zeta(2, 2) == pi**2/6 - 1 assert zeta(4, 3) == pi**4/90 - Rational(17, 16) assert zeta(6, 4) == pi**6/945 - Rational(47449, 46656) assert zeta(2, -2) == pi**2/6 + Rational(5, 4) assert zeta(4, -3) == pi**4/90 + Rational(1393, 1296) assert zeta(6, -4) == pi**6/945 + Rational(3037465, 2985984) assert zeta(-1) == -Rational(1, 12) assert zeta(-2) == 0 assert zeta(-3) == Rational(1, 120) assert zeta(-4) == 0 assert zeta(-5) == -Rational(1, 252) assert zeta(-1, 3) == -Rational(37, 12) assert zeta(-1, 7) == -Rational(253, 12) assert zeta(-1, -4) == Rational(119, 12) assert zeta(-1, -9) == Rational(539, 12) assert zeta(-4, 3) == -17 assert zeta(-4, -8) == 8772 assert zeta(0, 0) == -Rational(1, 2) assert zeta(0, 1) == -Rational(1, 2) assert zeta(0, -1) == Rational(1, 2) assert zeta(0, 2) == -Rational(3, 2) assert zeta(0, -2) == Rational(3, 2) assert zeta(3).evalf(20).epsilon_eq(Float("1.2020569031595942854",20), 1e-19)
def trigamma_at_1_coefficient(k): return ((-1)**k * (k + 1) * zeta(k + 2))
def test_harmonic_limit_fail(): n = Symbol("n") m = Symbol("m") # For m > 1: assert limit(harmonic(n, m), n, oo) == zeta(m)
def test_zeta(): s = S(5) x = Zeta('x', s) assert E(x) == zeta(s - 1) / zeta(s) assert simplify( variance(x)) == (zeta(s) * zeta(s - 2) - zeta(s - 1)**2) / zeta(s)**2
def test_zeta_series(): assert zeta(x, a).series(a, 0, 2) == \ zeta(x, 0) - x*a*zeta(x + 1, 0) + O(a**2)
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == r'f{\left (x \right )}' assert latex(f) == r'f' g = Function('g') assert latex(g(x, y)) == r'g{\left (x,y \right )}' assert latex(g) == r'g' h = Function('h') assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}' assert latex(h) == r'h' Li = Function('Li') assert latex(Li) == r'\operatorname{Li}' assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}' beta = Function('beta') # not to be confused with the beta function assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(beta) == r"\beta" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex( FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re{x} + \Re{y}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex( polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(elliptic_k(z)) == r"K\left(z\right)" assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)" assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)" assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)" assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)" assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)" assert latex(elliptic_e(z)) == r"E\left(z\right)" assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)" assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y, z)**2) == \ r"\Pi^{2}\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)" assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}', latex(Chi(x)**2) assert latex( jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex( gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex( chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex( chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex( assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex( assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' theta = Symbol("theta", real=True) phi = Symbol("phi", real=True) assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)' assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}' assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)' assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}' # Test latex printing of function names with "_" assert latex( polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift( 0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}" assert latex(totient(n)) == r'\phi\left( n \right)' # some unknown function name should get rendered with \operatorname fjlkd = Function('fjlkd') assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}' # even when it is referred to without an argument assert latex(fjlkd) == r'\operatorname{fjlkd}'
def test_riemann_xi_eval(): assert riemann_xi(2) == pi / 6 assert riemann_xi(0) == Rational(1, 2) assert riemann_xi(1) == Rational(1, 2) assert riemann_xi(3).rewrite(zeta) == 3 * zeta(3) / (2 * pi) assert riemann_xi(4) == pi**2 / 15