예제 #1
0
def test_gruntz_eval_special_fail():
    # TODO exponential integral Ei
    assert gruntz(
        (Ei(x - exp(-exp(x))) - Ei(x)) *exp(-x)*exp(exp(x))*x, x, oo) == -1

    # TODO zeta function series
    assert gruntz(
        exp((log(2) + 1)*x) * (zeta(x + exp(-x)) - zeta(x)), x, oo) == -log(2)
예제 #2
0
def test_issue_14177():
    n = Symbol('n', positive=True, integer=True)

    assert zeta(2*n) == (-1)**(n + 1)*2**(2*n - 1)*pi**(2*n)*bernoulli(2*n)/factorial(2*n)
    assert zeta(-n) == (-1)**(-n)*bernoulli(n + 1)/(n + 1)

    n = Symbol('n')

    assert zeta(2*n) == zeta(2*n) # As sign of z (= 2*n) is not determined
예제 #3
0
def test_derivatives():
    from sympy import Derivative
    assert zeta(x, a).diff(x) == Derivative(zeta(x, a), x)
    assert zeta(x, a).diff(a) == -x*zeta(x + 1, a)
    assert lerchphi(z, s, a).diff(z) == (lerchphi(z, s-1, a) - a*lerchphi(z, s, a))/z
    assert lerchphi(z, s, a).diff(a) == -s*lerchphi(z, s+1, a)
    assert polylog(s, z).diff(z) == polylog(s - 1, z)/z

    b = randcplx()
    c = randcplx()
    assert td(zeta(b, x), x)
    assert td(polylog(b, z), z)
    assert td(lerchphi(c, b, x), x)
    assert td(lerchphi(x, b, c), x)
예제 #4
0
def test_evalf_fast_series_issue998():
    # Catalan's constant
    assert NS(
        Sum(
            (-1) ** (n - 1)
            * 2 ** (8 * n)
            * (40 * n ** 2 - 24 * n + 3)
            * fac(2 * n) ** 3
            * fac(n) ** 2
            / n ** 3
            / (2 * n - 1)
            / fac(4 * n) ** 2,
            (n, 1, oo),
        )
        / 64,
        100,
    ) == NS(Catalan, 100)
    astr = NS(zeta(3), 100)
    assert NS(5 * Sum((-1) ** (n - 1) * fac(n) ** 2 / n ** 3 / fac(2 * n), (n, 1, oo)) / 2, 100) == astr
    assert (
        NS(
            Sum(
                (-1) ** (n - 1) * (56 * n ** 2 - 32 * n + 5) / (2 * n - 1) ** 2 * fac(n - 1) ** 3 / fac(3 * n),
                (n, 1, oo),
            )
            / 4,
            100,
        )
        == astr
    )
예제 #5
0
    def eval(cls, n, m=None):
        from sympy import zeta
        if m is S.One:
            return cls(n)
        if m is None:
            m = S.One

        if m.is_zero:
            return n

        if n is S.Infinity and m.is_Number:
            # TODO: Fix for symbolic values of m
            if m.is_negative:
                return S.NaN
            elif LessThan(m, S.One):
                return S.Infinity
            elif StrictGreaterThan(m, S.One):
                return zeta(m)
            else:
                return cls

        if n.is_Integer and n.is_nonnegative and m.is_Integer:
            if n == 0:
                return S.Zero
            if not m in cls._functions:
                @recurrence_memo([0])
                def f(n, prev):
                    return prev[-1] + S.One / n**m
                cls._functions[m] = f
            return cls._functions[m](int(n))
예제 #6
0
def test_harmonic():
    n = Symbol("n")

    assert harmonic(n, 0) == n
    assert harmonic(n, 1) == harmonic(n)

    assert harmonic(0, 1) == 0
    assert harmonic(1, 1) == 1
    assert harmonic(2, 1) == Rational(3, 2)
    assert harmonic(3, 1) == Rational(11, 6)
    assert harmonic(4, 1) == Rational(25, 12)
    assert harmonic(0, 2) == 0
    assert harmonic(1, 2) == 1
    assert harmonic(2, 2) == Rational(5, 4)
    assert harmonic(3, 2) == Rational(49, 36)
    assert harmonic(4, 2) == Rational(205, 144)
    assert harmonic(0, 3) == 0
    assert harmonic(1, 3) == 1
    assert harmonic(2, 3) == Rational(9, 8)
    assert harmonic(3, 3) == Rational(251, 216)
    assert harmonic(4, 3) == Rational(2035, 1728)

    assert harmonic(oo, -1) == S.NaN
    assert harmonic(oo, 0) == oo
    assert harmonic(oo, S.Half) == oo
    assert harmonic(oo, 1) == oo
    assert harmonic(oo, 2) == (pi**2)/6
    assert harmonic(oo, 3) == zeta(3)
예제 #7
0
def test_evalf_fast_series():
    # Euler transformed series for sqrt(1+x)
    assert NS(Sum(
        fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100)

    # Some series for exp(1)
    estr = NS(E, 100)
    assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr
    assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr
    assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr
    assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr

    pistr = NS(pi, 100)
    # Ramanujan series for pi
    assert NS(9801/sqrt(8)/Sum(fac(
        4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr
    assert NS(1/Sum(
        binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr
    # Machin's formula for pi
    assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) -
        4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr

    # Apery's constant
    astr = NS(zeta(3), 100)
    P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \
        n + 12463
    assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac(
        n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr
    assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 /
              fac(2*n + 1)**5, (n, 0, oo)), 100) == astr
예제 #8
0
def test_polylog_expansion():
    from sympy import factor, log
    assert polylog(s, 0) == 0
    assert polylog(s, 1) == zeta(s)
    assert polylog(s, -1) == dirichlet_eta(s)

    assert myexpand(polylog(1, z), -log(1 + exp_polar(-I*pi)*z))
    assert myexpand(polylog(0, z), z/(1 - z))
    assert myexpand(polylog(-1, z), z**2/(1 - z)**2 + z/(1 - z))
    assert myexpand(polylog(-5, z), None)
예제 #9
0
파일: test_latex.py 프로젝트: songuke/sympy
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1)+exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
    r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
    r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2,inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2,inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2),inv_trig_style="power",fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2,k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3,k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x+y)) == r"\Re {\left (x + y \right )}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x,y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta{\left (x \right )}'
예제 #10
0
def test_Sum_doit():
    f = Function('f')
    assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3
    assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \
        3*Integral(a**2)
    assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2)

    # test nested sum evaluation
    s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n))
    assert 0 == (s.doit() - n*(n+1)*(n-1)).factor()

    assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == Piecewise((1, And(-oo < n, n < oo)), (0, True))
    assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == Piecewise((x, And(-oo < n, n < oo)), (0, True))
    assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3
    assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \
           3 * Piecewise((1, And(S(1) <= k, k <= 3)), (0, True))
    assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \
           f(1) + f(2) + f(3)
    assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \
           Sum(Piecewise((f(n), And(Le(0, n), n < oo)), (0, True)), (n, 1, oo))
    l = Symbol('l', integer=True, positive=True)
    assert Sum(f(l) * Sum(KroneckerDelta(m, l), (m, 0, oo)), (l, 1, oo)).doit() == \
           Sum(f(l), (l, 1, oo))

    # issue 2597
    nmax = symbols('N', integer=True, positive=True)
    pw = Piecewise((1, And(S(1) <= n, n <= nmax)), (0, True))
    assert Sum(pw, (n, 1, nmax)).doit() == Sum(pw, (n, 1, nmax))

    q, s = symbols('q, s')
    assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1),
        (Sum(n**(-2*s), (n, 1, oo)), True))
    assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1),
        (Sum((n + 1)**(-s), (n, 0, oo)), True))
    assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise(
        (zeta(s, q), And(q > 0, s > 1)),
        (Sum((n + q)**(-s), (n, 0, oo)), True))
    assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise(
        (zeta(s, 2*q), And(2*q > 0, s > 1)),
        (Sum((n + q)**(-s), (n, q, oo)), True))
    assert summation(1/n**2, (n, 1, oo)) == zeta(2)
    assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo))
예제 #11
0
def test_polylog_expansion():
    from sympy import log
    assert polylog(s, 0) == 0
    assert polylog(s, 1) == zeta(s)
    assert polylog(s, -1) == -dirichlet_eta(s)
    assert polylog(s, exp_polar(4*I*pi/3)) == polylog(s, exp(4*I*pi/3))
    assert polylog(s, exp_polar(I*pi)/3) == polylog(s, exp(I*pi)/3)

    assert myexpand(polylog(1, z), -log(1 - z))
    assert myexpand(polylog(0, z), z/(1 - z))
    assert myexpand(polylog(-1, z), z/(1 - z)**2)
    assert ((1-z)**3 * expand_func(polylog(-2, z))).simplify() == z*(1 + z)
    assert myexpand(polylog(-5, z), None)
예제 #12
0
def test_lerchphi_expansion():
    assert myexpand(lerchphi(1, s, a), zeta(s, a))
    assert myexpand(lerchphi(z, s, 1), polylog(s, z) / z)

    # direct summation
    assert myexpand(lerchphi(z, -1, a), a / (1 - z) + z / (1 - z) ** 2)
    assert myexpand(lerchphi(z, -3, a), None)
    # polylog reduction
    assert myexpand(
        lerchphi(z, s, S(1) / 2),
        2 ** (s - 1) * (polylog(s, sqrt(z)) / sqrt(z) - polylog(s, polar_lift(-1) * sqrt(z)) / sqrt(z)),
    )
    assert myexpand(lerchphi(z, s, 2), -1 / z + polylog(s, z) / z ** 2)
    assert myexpand(lerchphi(z, s, S(3) / 2), None)
    assert myexpand(lerchphi(z, s, S(7) / 3), None)
    assert myexpand(lerchphi(z, s, -S(1) / 3), None)
    assert myexpand(lerchphi(z, s, -S(5) / 2), None)

    # hurwitz zeta reduction
    assert myexpand(lerchphi(-1, s, a), 2 ** (-s) * zeta(s, a / 2) - 2 ** (-s) * zeta(s, (a + 1) / 2))
    assert myexpand(lerchphi(I, s, a), None)
    assert myexpand(lerchphi(-I, s, a), None)
    assert myexpand(lerchphi(exp(2 * I * pi / 5), s, a), None)
예제 #13
0
def test_hypersum():
    from sympy import simplify, sin, hyper
    assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
    assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
    assert simplify(summation((-1)**n*x**(2*n+1)/factorial(2*n+1),
                              (n, 3, oo))) \
           == -x + sin(x) + x**3/6 - x**5/120

    assert summation(1/(n+2)**3, (n, 1, oo)) == \
           -S(9)/8 + zeta(3)
    assert summation(1/n**4, (n, 1, oo)) == pi**4/90

    s = summation(x**n*n, (n, -oo, 0))
    assert s.is_Piecewise
    assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
    assert s.args[0].args[1] == (abs(1/x) < 1)
예제 #14
0
def test_rewriting():
    assert dirichlet_eta(x).rewrite(zeta) == (1 - 2 ** (1 - x)) * zeta(x)
    assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x) / (1 - 2 ** (1 - x))
    assert tn(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x)
    assert tn(zeta(x), zeta(x).rewrite(dirichlet_eta), x)

    assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a)
    assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1) * z

    assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a)
    assert z * lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z)
예제 #15
0
def test_hypersum():
    from sympy import sin
    assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
    assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
    assert simplify(summation((-1)**n*x**(2*n + 1) /
        factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120

    assert summation(1/(n + 2)**3, (n, 1, oo)) == -S(9)/8 + zeta(3)
    assert summation(1/n**4, (n, 1, oo)) == pi**4/90

    s = summation(x**n*n, (n, -oo, 0))
    assert s.is_Piecewise
    assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
    assert s.args[0].args[1] == (abs(1/x) < 1)

    m = Symbol('n', integer=True, positive=True)
    assert summation(binomial(m, k), (k, 0, m)) == 2**m
예제 #16
0
def test_hypersum():
    from sympy import simplify, sin, hyper
    assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
    assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
    assert simplify(summation((-1)**n*x**(2*n + 1) /
        factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120

    assert summation(1/(n + 2)**3, (n, 1, oo)) == -S(9)/8 + zeta(3)
    assert summation(1/n**4, (n, 1, oo)) == pi**4/90

    s = summation(x**n*n, (n, -oo, 0))
    assert s.is_Piecewise
    assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
    assert s.args[0].args[1] == (abs(1/x) < 1)

    m = Symbol('n', integer=True, positive=True)
    assert summation(binomial(m, k), (k, 0, m)) == 2**m
예제 #17
0
def test_rewriting():
    assert dirichlet_eta(x).rewrite(zeta) == (1 - 2**(1 - x)) * zeta(x)
    assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x) / (1 -
                                                                 2**(1 - x))
    assert tn(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x)
    assert tn(zeta(x), zeta(x).rewrite(dirichlet_eta), x)

    assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a)
    assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1) * z

    assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a)
    assert z * lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z)
예제 #18
0
def test_euler_maclaurin():
    # Exact polynomial sums with E-M
    def check_exact(f, a, b, m, n):
        A = Sum(f, (k, a, b))
        s, e = A.euler_maclaurin(m, n)
        assert (e == 0) and (s.expand() == A.doit())
    check_exact(k**4, a, b, 0, 2)
    check_exact(k**4 + 2*k, a, b, 1, 2)
    check_exact(k**4 + k**2, a, b, 1, 5)
    check_exact(k**5, 2, 6, 1, 2)
    check_exact(k**5, 2, 6, 1, 3)
    # Not exact
    assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
    # Numerical test
    for m, n in [(2, 4), (2, 20), (10, 20), (18, 20)]:
        A = Sum(1/k**3, (k, 1, oo))
        s, e = A.euler_maclaurin(m, n)
        assert abs((s - zeta(3)).evalf()) < e.evalf()
예제 #19
0
def test_euler_maclaurin():
    # Exact polynomial sums with E-M
    def check_exact(f, a, b, m, n):
        A = Sum(f, (k, a, b))
        s, e = A.euler_maclaurin(m, n)
        assert (e == 0) and (s.expand() == A.doit())
    check_exact(k**4, a, b, 0, 2)
    check_exact(k**4 + 2*k, a, b, 1, 2)
    check_exact(k**4 + k**2, a, b, 1, 5)
    check_exact(k**5, 2, 6, 1, 2)
    check_exact(k**5, 2, 6, 1, 3)
    # Not exact
    assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
    # Numerical test
    for m, n in [(2, 4), (2, 20), (10, 20), (18, 20)]:
        A = Sum(1/k**3, (k, 1, oo))
        s, e = A.euler_maclaurin(m, n)
        assert abs((s - zeta(3)).evalf()) < e.evalf()
예제 #20
0
def test_moment_generating_functions():
    t = S('t')

    geometric_mgf = moment_generating_function(Geometric('g', S(1)/2))(t)
    assert geometric_mgf.diff(t).subs(t, 0) == 2

    logarithmic_mgf = moment_generating_function(Logarithmic('l', S(1)/2))(t)
    assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2)

    negative_binomial_mgf = moment_generating_function(NegativeBinomial('n', 5, S(1)/3))(t)
    assert negative_binomial_mgf.diff(t).subs(t, 0) == S(5)/2

    poisson_mgf = moment_generating_function(Poisson('p', 5))(t)
    assert poisson_mgf.diff(t).subs(t, 0) == 5

    yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t)
    assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == S(3)/2

    zeta_mgf = moment_generating_function(Zeta('z', 5))(t)
    assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5))
예제 #21
0
def test_moment_generating_functions():
    t = S('t')

    geometric_mgf = moment_generating_function(Geometric('g', S(1)/2))(t)
    assert geometric_mgf.diff(t).subs(t, 0) == 2

    logarithmic_mgf = moment_generating_function(Logarithmic('l', S(1)/2))(t)
    assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2)

    negative_binomial_mgf = moment_generating_function(NegativeBinomial('n', 5, S(1)/3))(t)
    assert negative_binomial_mgf.diff(t).subs(t, 0) == S(5)/2

    poisson_mgf = moment_generating_function(Poisson('p', 5))(t)
    assert poisson_mgf.diff(t).subs(t, 0) == 5

    yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t)
    assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == S(3)/2

    zeta_mgf = moment_generating_function(Zeta('z', 5))(t)
    assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5))
예제 #22
0
def test_euler_maclaurin():
    # Exact polynomial sums with E-M
    def check_exact(f, a, b, m, n):
        A = Sum(f, (k, a, b))
        s, e = A.euler_maclaurin(m, n)
        assert (e == 0) and (s.expand() == A.doit())
    check_exact(k**4, a, b, 0, 2)
    check_exact(k**4 + 2*k, a, b, 1, 2)
    check_exact(k**4 + k**2, a, b, 1, 5)
    check_exact(k**5, 2, 6, 1, 2)
    check_exact(k**5, 2, 6, 1, 3)
    assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0)
    # Not exact
    assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
    # Numerical test
    for m, n in [(2, 4), (2, 20), (10, 20), (18, 20)]:
        A = Sum(1/k**3, (k, 1, oo))
        s, e = A.euler_maclaurin(m, n)
        assert abs((s - zeta(3)).evalf()) < e.evalf()

    raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin())
예제 #23
0
def test_euler_maclaurin():
    # Exact polynomial sums with E-M
    def check_exact(f, a, b, m, n):
        A = Sum(f, (k, a, b))
        s, e = A.euler_maclaurin(m, n)
        assert (e == 0) and (s.expand() == A.doit())
    check_exact(k**4, a, b, 0, 2)
    check_exact(k**4 + 2*k, a, b, 1, 2)
    check_exact(k**4 + k**2, a, b, 1, 5)
    check_exact(k**5, 2, 6, 1, 2)
    check_exact(k**5, 2, 6, 1, 3)
    assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0)
    # Not exact
    assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
    # Numerical test
    for m, n in [(2, 4), (2, 20), (10, 20), (18, 20)]:
        A = Sum(1/k**3, (k, 1, oo))
        s, e = A.euler_maclaurin(m, n)
        assert abs((s - zeta(3)).evalf()) < e.evalf()

    raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin())
예제 #24
0
def test_evalf_fast_series():
    # Euler transformed series for sqrt(1+x)
    assert NS(Sum(fac(2 * n + 1) / fac(n)**2 / 2**(3 * n + 1), (n, 0, oo)),
              100) == NS(sqrt(2), 100)

    # Some series for exp(1)
    estr = NS(E, 100)
    assert NS(Sum(1 / fac(n), (n, 0, oo)), 100) == estr
    assert NS(1 / Sum((1 - 2 * n) / fac(2 * n), (n, 0, oo)), 100) == estr
    assert NS(Sum((2 * n + 1) / fac(2 * n), (n, 0, oo)), 100) == estr
    assert NS(
        Sum((4 * n + 3) / 2**(2 * n + 1) / fac(2 * n + 1), (n, 0, oo))**2,
        100) == estr

    pistr = NS(pi, 100)
    # Ramanujan series for pi
    assert NS(
        9801 / sqrt(8) / Sum(
            fac(4 * n) * (1103 + 26390 * n) / fac(n)**4 / 396**(4 * n),
            (n, 0, oo)), 100) == pistr
    assert NS(
        1 / Sum(
            binomial(2 * n, n)**3 * (42 * n + 5) / 2**(12 * n + 4),
            (n, 0, oo)), 100) == pistr
    # Machin's formula for pi
    assert NS(
        16 * Sum((-1)**n / (2 * n + 1) / 5**(2 * n + 1), (n, 0, oo)) - 4 * Sum(
            (-1)**n / (2 * n + 1) / 239**(2 * n + 1), (n, 0, oo)),
        100) == pistr

    # Apery's constant
    astr = NS(zeta(3), 100)
    P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \
        n + 12463
    assert NS(
        Sum((-1)**n * P / 24 * (fac(2 * n + 1) * fac(2 * n) * fac(n))**3 /
            fac(3 * n + 2) / fac(4 * n + 3)**3, (n, 0, oo)), 100) == astr
    assert NS(
        Sum((-1)**n * (205 * n**2 + 250 * n + 77) / 64 * fac(n)**10 /
            fac(2 * n + 1)**5, (n, 0, oo)), 100) == astr
예제 #25
0
def test_trigamma():
    assert trigamma(nan) == nan

    assert trigamma(oo) == 0

    assert trigamma(1) == pi**2 / 6
    assert trigamma(2) == pi**2 / 6 - 1
    assert trigamma(3) == pi**2 / 6 - Rational(5, 4)

    assert trigamma(x, evaluate=False).rewrite(zeta) == zeta(2, x)
    assert trigamma(x, evaluate=False).rewrite(harmonic) == \
        trigamma(x).rewrite(polygamma).rewrite(harmonic)

    assert trigamma(x, evaluate=False).fdiff() == polygamma(2, x)

    assert trigamma(x, evaluate=False).is_real is None

    assert trigamma(x, evaluate=False).is_positive is None

    assert trigamma(x, evaluate=False).is_negative is None

    assert trigamma(x, evaluate=False).rewrite(polygamma) == polygamma(1, x)
예제 #26
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re {\left (x + y \right )}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'

    # Test latex printing of function names with "_"
    assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
예제 #27
0
파일: drv_types.py 프로젝트: Lenqth/sympy
 def pdf(self, k):
     s = self.s
     return 1 / (k**s * zeta(s))
예제 #28
0
 def _characteristic_function(self, t):
     return polylog(self.s, exp(I * t)) / zeta(self.s)
예제 #29
0
def test_issue_10475():
    a = Symbol("a", extended_real=True)
    b = Symbol("b", extended_positive=True)
    s = Symbol("s", zero=False)

    assert zeta(2 + I).is_finite
    assert zeta(1).is_finite is False
    assert zeta(x).is_finite is None
    assert zeta(x + I).is_finite is None
    assert zeta(a).is_finite is None
    assert zeta(b).is_finite is None
    assert zeta(-b).is_finite is True
    assert zeta(b ** 2 - 2 * b + 1).is_finite is None
    assert zeta(a + I).is_finite is True
    assert zeta(b + 1).is_finite is True
    assert zeta(s + 1).is_finite is True
예제 #30
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function("f")
    assert latex(f(x)) == "\\operatorname{f}{\\left (x \\right )}"

    beta = Function("beta")

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"\sin {2 x^{2}}"
    assert latex(sin(x ** 2), fold_func_brackets=True) == r"\sin {x^{2}}"

    assert latex(asin(x) ** 2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="full") == r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="power") == r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x ** 3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y) ** 2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x ** 3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y) ** 2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r"\gamma\left(x, y\right)"
    assert latex(uppergamma(x, y)) == r"\Gamma\left(x, y\right)"

    assert latex(cot(x)) == r"\cot{\left (x \right )}"
    assert latex(coth(x)) == r"\coth{\left (x \right )}"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(root(x, y)) == r"x^{\frac{1}{y}}"
    assert latex(arg(x)) == r"\arg{\left (x \right )}"
    assert latex(zeta(x)) == r"\zeta\left(x\right)"

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x) ** 2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y) ** 2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x) ** 2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x, y) ** 2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n) ** 2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r"\operatorname{Ei}{\left (x \right )}"
    assert latex(Ei(x) ** 2) == r"\operatorname{Ei}^{2}{\left (x \right )}"
    assert latex(expint(x, y) ** 2) == r"\operatorname{E}_{x}^{2}\left(y\right)"
    assert latex(Shi(x) ** 2) == r"\operatorname{Shi}^{2}{\left (x \right )}"
    assert latex(Si(x) ** 2) == r"\operatorname{Si}^{2}{\left (x \right )}"
    assert latex(Ci(x) ** 2) == r"\operatorname{Ci}^{2}{\left (x \right )}"
    assert latex(Chi(x) ** 2) == r"\operatorname{Chi}^{2}{\left (x \right )}"

    assert latex(jacobi(n, a, b, x)) == r"P_{n}^{\left(a,b\right)}\left(x\right)"
    assert latex(jacobi(n, a, b, x) ** 2) == r"\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}"
    assert latex(gegenbauer(n, a, x)) == r"C_{n}^{\left(a\right)}\left(x\right)"
    assert latex(gegenbauer(n, a, x) ** 2) == r"\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(chebyshevt(n, x)) == r"T_{n}\left(x\right)"
    assert latex(chebyshevt(n, x) ** 2) == r"\left(T_{n}\left(x\right)\right)^{2}"
    assert latex(chebyshevu(n, x)) == r"U_{n}\left(x\right)"
    assert latex(chebyshevu(n, x) ** 2) == r"\left(U_{n}\left(x\right)\right)^{2}"
    assert latex(legendre(n, x)) == r"P_{n}\left(x\right)"
    assert latex(legendre(n, x) ** 2) == r"\left(P_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_legendre(n, a, x)) == r"P_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_legendre(n, a, x) ** 2) == r"\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(laguerre(n, x)) == r"L_{n}\left(x\right)"
    assert latex(laguerre(n, x) ** 2) == r"\left(L_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_laguerre(n, a, x)) == r"L_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_laguerre(n, a, x) ** 2) == r"\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(hermite(n, x)) == r"H_{n}\left(x\right)"
    assert latex(hermite(n, x) ** 2) == r"\left(H_{n}\left(x\right)\right)^{2}"

    # Test latex printing of function names with "_"
    assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0) ** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
예제 #31
0
def test_polygamma():
    from sympy import I

    assert polygamma(n, nan) == nan

    assert polygamma(0, oo) == oo
    assert polygamma(0, -oo) == oo
    assert polygamma(0, I*oo) == oo
    assert polygamma(0, -I*oo) == oo
    assert polygamma(1, oo) == 0
    assert polygamma(5, oo) == 0

    assert polygamma(0, -9) == zoo

    assert polygamma(0, -9) == zoo
    assert polygamma(0, -1) == zoo

    assert polygamma(0, 0) == zoo

    assert polygamma(0, 1) == -EulerGamma
    assert polygamma(0, 7) == Rational(49, 20) - EulerGamma

    assert polygamma(1, 1) == pi**2/6
    assert polygamma(1, 2) == pi**2/6 - 1
    assert polygamma(1, 3) == pi**2/6 - Rational(5, 4)
    assert polygamma(3, 1) == pi**4 / 15
    assert polygamma(3, 5) == 6*(Rational(-22369, 20736) + pi**4/90)
    assert polygamma(5, 1) == 8 * pi**6 / 63

    def t(m, n):
        x = S(m)/n
        r = polygamma(0, x)
        if r.has(polygamma):
            return False
        return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10
    assert t(1, 2)
    assert t(3, 2)
    assert t(-1, 2)
    assert t(1, 4)
    assert t(-3, 4)
    assert t(1, 3)
    assert t(4, 3)
    assert t(3, 4)
    assert t(2, 3)

    assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
    assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
    assert polygamma(2, x).rewrite(zeta) == -2*zeta(3, x)

    assert polygamma(3, 7*x).diff(x) == 7*polygamma(4, 7*x)

    assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
    assert polygamma(2, x).rewrite(harmonic) == 2*harmonic(x - 1, 3) - 2*zeta(3)
    ni = Symbol("n", integer=True)
    assert polygamma(ni, x).rewrite(harmonic) == (-1)**(ni + 1)*(-harmonic(x - 1, ni + 1)
                                                                 + zeta(ni + 1))*factorial(ni)

    # Polygamma of non-negative integer order is unbranched:
    from sympy import exp_polar
    k = Symbol('n', integer=True, nonnegative=True)
    assert polygamma(k, exp_polar(2*I*pi)*x) == polygamma(k, x)

    # but negative integers are branched!
    k = Symbol('n', integer=True)
    assert polygamma(k, exp_polar(2*I*pi)*x).args == (k, exp_polar(2*I*pi)*x)

    # Polygamma of order -1 is loggamma:
    assert polygamma(-1, x) == loggamma(x)

    # But smaller orders are iterated integrals and don't have a special name
    assert polygamma(-2, x).func is polygamma

    # Test a bug
    assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)
예제 #32
0
파일: drv_types.py 프로젝트: Lenqth/sympy
 def _moment_generating_function(self, t):
     return polylog(self.s, exp(t)) / zeta(self.s)
예제 #33
0
def tetragamma_at_1_coefficient(k):
    return ((-1)**(k + 1) * (k + 1) * (k + 2) * zeta(k + 3)).evalf(decimal_precision, maxn=evalf_inner_precision)
예제 #34
0
def digamma_at_2_coefficient(k):
    if k == 0:
        return 0.0
    return ((-1)**(k + 1)*(zeta(k + 1) - 1)).evalf(decimal_precision, maxn=evalf_inner_precision)
예제 #35
0
def digamma_at_1_coefficient(k):
    if k == 0:
        return digamma(1).evalf(decimal_precision, maxn=evalf_inner_precision)
    return ((-1)**(k + 1) * zeta(k + 1)).evalf(decimal_precision, maxn=evalf_inner_precision)
예제 #36
0
def test_zeta_series():
    assert zeta(x, a).series(a, 0, 2) == zeta(x, 0) - x * a * zeta(x + 1, 0) + O(a ** 2)
예제 #37
0
def test_issue_10475():
    a = Symbol("a", real=True)
    b = Symbol("b", positive=True)
    s = Symbol("s", zero=False)

    assert zeta(2 + I).is_finite
    assert zeta(1).is_finite is False
    assert zeta(x).is_finite is None
    assert zeta(x + I).is_finite is None
    assert zeta(a).is_finite is None
    assert zeta(b).is_finite is None
    assert zeta(-b).is_finite is True
    assert zeta(b ** 2 - 2 * b + 1).is_finite is None
    assert zeta(a + I).is_finite is True
    assert zeta(b + 1).is_finite is True
    assert zeta(s + 1).is_finite is True
예제 #38
0
def test_polygamma():
    from sympy import I

    assert polygamma(n, nan) is nan

    assert polygamma(0, oo) is oo
    assert polygamma(0, -oo) is oo
    assert polygamma(0, I * oo) is oo
    assert polygamma(0, -I * oo) is oo
    assert polygamma(1, oo) == 0
    assert polygamma(5, oo) == 0

    assert polygamma(0, -9) is zoo

    assert polygamma(0, -9) is zoo
    assert polygamma(0, -1) is zoo

    assert polygamma(0, 0) is zoo

    assert polygamma(0, 1) == -EulerGamma
    assert polygamma(0, 7) == Rational(49, 20) - EulerGamma

    assert polygamma(1, 1) == pi**2 / 6
    assert polygamma(1, 2) == pi**2 / 6 - 1
    assert polygamma(1, 3) == pi**2 / 6 - Rational(5, 4)
    assert polygamma(3, 1) == pi**4 / 15
    assert polygamma(3, 5) == 6 * (Rational(-22369, 20736) + pi**4 / 90)
    assert polygamma(5, 1) == 8 * pi**6 / 63

    assert polygamma(1, S.Half) == pi**2 / 2
    assert polygamma(2, S.Half) == -14 * zeta(3)
    assert polygamma(11, S.Half) == 176896 * pi**12

    def t(m, n):
        x = S(m) / n
        r = polygamma(0, x)
        if r.has(polygamma):
            return False
        return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10

    assert t(1, 2)
    assert t(3, 2)
    assert t(-1, 2)
    assert t(1, 4)
    assert t(-3, 4)
    assert t(1, 3)
    assert t(4, 3)
    assert t(3, 4)
    assert t(2, 3)
    assert t(123, 5)

    assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
    assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
    assert polygamma(2, x).rewrite(zeta) == -2 * zeta(3, x)
    assert polygamma(I, 2).rewrite(zeta) == polygamma(I, 2)
    n1 = Symbol('n1')
    n2 = Symbol('n2', real=True)
    n3 = Symbol('n3', integer=True)
    n4 = Symbol('n4', positive=True)
    n5 = Symbol('n5', positive=True, integer=True)
    assert polygamma(n1, x).rewrite(zeta) == polygamma(n1, x)
    assert polygamma(n2, x).rewrite(zeta) == polygamma(n2, x)
    assert polygamma(n3, x).rewrite(zeta) == polygamma(n3, x)
    assert polygamma(n4, x).rewrite(zeta) == polygamma(n4, x)
    assert polygamma(
        n5,
        x).rewrite(zeta) == (-1)**(n5 + 1) * factorial(n5) * zeta(n5 + 1, x)

    assert polygamma(3, 7 * x).diff(x) == 7 * polygamma(4, 7 * x)

    assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
    assert polygamma(
        2, x).rewrite(harmonic) == 2 * harmonic(x - 1, 3) - 2 * zeta(3)
    ni = Symbol("n", integer=True)
    assert polygamma(
        ni,
        x).rewrite(harmonic) == (-1)**(ni + 1) * (-harmonic(x - 1, ni + 1) +
                                                  zeta(ni + 1)) * factorial(ni)

    # Polygamma of non-negative integer order is unbranched:
    from sympy import exp_polar
    k = Symbol('n', integer=True, nonnegative=True)
    assert polygamma(k, exp_polar(2 * I * pi) * x) == polygamma(k, x)

    # but negative integers are branched!
    k = Symbol('n', integer=True)
    assert polygamma(k,
                     exp_polar(2 * I * pi) *
                     x).args == (k, exp_polar(2 * I * pi) * x)

    # Polygamma of order -1 is loggamma:
    assert polygamma(-1, x) == loggamma(x)

    # But smaller orders are iterated integrals and don't have a special name
    assert polygamma(-2, x).func is polygamma

    # Test a bug
    assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)

    assert polygamma(2, 2.5).is_positive == False
    assert polygamma(2, -2.5).is_positive == False
    assert polygamma(3, 2.5).is_positive == True
    assert polygamma(3, -2.5).is_positive is True
    assert polygamma(-2, -2.5).is_positive is None
    assert polygamma(-3, -2.5).is_positive is None

    assert polygamma(2, 2.5).is_negative == True
    assert polygamma(3, 2.5).is_negative == False
    assert polygamma(3, -2.5).is_negative == False
    assert polygamma(2, -2.5).is_negative is True
    assert polygamma(-2, -2.5).is_negative is None
    assert polygamma(-3, -2.5).is_negative is None

    assert polygamma(I, 2).is_positive is None
    assert polygamma(I, 3).is_negative is None

    # issue 17350
    assert polygamma(pi, 3).evalf() == polygamma(pi, 3)
    assert (I*polygamma(I, pi)).as_real_imag() == \
           (-im(polygamma(I, pi)), re(polygamma(I, pi)))
    assert (tanh(polygamma(I, 1))).rewrite(exp) == \
           (exp(polygamma(I, 1)) - exp(-polygamma(I, 1)))/(exp(polygamma(I, 1)) + exp(-polygamma(I, 1)))
    assert (I / polygamma(I, 4)).rewrite(exp) == \
           I*sqrt(re(polygamma(I, 4))**2 + im(polygamma(I, 4))**2)\
           /((re(polygamma(I, 4)) + I*im(polygamma(I, 4)))*Abs(polygamma(I, 4)))
    assert unchanged(polygamma, 2.3, 1.0)

    # issue 12569
    assert unchanged(im, polygamma(0, I))
    assert polygamma(Symbol('a', positive=True), Symbol(
        'b', positive=True)).is_real is True
    assert polygamma(0, I).is_real is None
def test_issue_10475():
    a = Symbol('a', real=True)
    b = Symbol('b', positive=True)
    s = Symbol('s', zero=False)

    assert zeta(2 + I).is_finite
    assert zeta(1).is_finite is False
    assert zeta(x).is_finite is None
    assert zeta(x + I).is_finite is None
    assert zeta(a).is_finite is None
    assert zeta(b).is_finite is None
    assert zeta(-b).is_finite is True
    assert zeta(b**2 - 2 * b + 1).is_finite is None
    assert zeta(a + I).is_finite is True
    assert zeta(b + 1).is_finite is True
    assert zeta(s + 1).is_finite is True
예제 #40
0
def test_zeta():

    assert zeta(nan) == nan
    assert zeta(x, nan) == nan

    assert zeta(0) == Rational(-1,2)
    assert zeta(0, x) == Rational(1,2) - x

    assert zeta(1) == zoo
    assert zeta(1, 2) == zoo
    assert zeta(1, -7) == zoo
    assert zeta(1, x) == zoo

    assert zeta(2, 0) == pi**2/6
    assert zeta(2, 1) == pi**2/6

    assert zeta(2) == pi**2/6
    assert zeta(4) == pi**4/90
    assert zeta(6) == pi**6/945

    assert zeta(2, 2) == pi**2/6 - 1
    assert zeta(4, 3) == pi**4/90 - Rational(17, 16)
    assert zeta(6, 4) == pi**6/945 - Rational(47449, 46656)

    assert zeta(2, -2) == pi**2/6 + Rational(5, 4)
    assert zeta(4, -3) == pi**4/90 + Rational(1393, 1296)
    assert zeta(6, -4) == pi**6/945 + Rational(3037465, 2985984)

    assert zeta(-1) == -Rational(1, 12)
    assert zeta(-2) == 0
    assert zeta(-3) == Rational(1, 120)
    assert zeta(-4) == 0
    assert zeta(-5) == -Rational(1, 252)

    assert zeta(-1, 3) == -Rational(37, 12)
    assert zeta(-1, 7) == -Rational(253, 12)
    assert zeta(-1, -4) == Rational(119, 12)
    assert zeta(-1, -9) == Rational(539, 12)

    assert zeta(-4, 3) == -17
    assert zeta(-4, -8) == 8772

    assert zeta(0, 0) == -Rational(1, 2)

    assert zeta(0, 1) == -Rational(1, 2)
    assert zeta(0, -1) == Rational(1, 2)

    assert zeta(0, 2) == -Rational(3, 2)
    assert zeta(0, -2) == Rational(3, 2)

    assert zeta(3).evalf(20).epsilon_eq(Real("1.2020569031595942854",20), 1e-19)
예제 #41
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,
                                  k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re {\left (x + y \right )}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x,
                         y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'
예제 #42
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,
                                  k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x,
                         y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'

    assert latex(jacobi(n, a, b,
                        x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(
        n, a, b,
        x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(gegenbauer(n, a,
                            x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(
        n, a,
        x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(chebyshevt(n,
                            x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(chebyshevu(n,
                            x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_legendre(n, a,
                                x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(
        n, a,
        x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_laguerre(n, a,
                                x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(
        n, a,
        x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0)**
                 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
예제 #43
0
def test_polygamma():
    from sympy import I

    assert polygamma(n, nan) == nan

    assert polygamma(0, oo) == oo
    assert polygamma(0, -oo) == oo
    assert polygamma(0, I * oo) == oo
    assert polygamma(0, -I * oo) == oo
    assert polygamma(1, oo) == 0
    assert polygamma(5, oo) == 0

    assert polygamma(0, -9) == zoo

    assert polygamma(0, -9) == zoo
    assert polygamma(0, -1) == zoo

    assert polygamma(0, 0) == zoo

    assert polygamma(0, 1) == -EulerGamma
    assert polygamma(0, 7) == Rational(49, 20) - EulerGamma

    assert polygamma(1, 1) == pi**2 / 6
    assert polygamma(1, 2) == pi**2 / 6 - 1
    assert polygamma(1, 3) == pi**2 / 6 - Rational(5, 4)
    assert polygamma(3, 1) == pi**4 / 15
    assert polygamma(3, 5) == 6 * (Rational(-22369, 20736) + pi**4 / 90)
    assert polygamma(5, 1) == 8 * pi**6 / 63

    def t(m, n):
        x = S(m) / n
        r = polygamma(0, x)
        if r.has(polygamma):
            return False
        return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10

    assert t(1, 2)
    assert t(3, 2)
    assert t(-1, 2)
    assert t(1, 4)
    assert t(-3, 4)
    assert t(1, 3)
    assert t(4, 3)
    assert t(3, 4)
    assert t(2, 3)

    assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
    assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
    assert polygamma(2, x).rewrite(zeta) == -2 * zeta(3, x)

    assert polygamma(3, 7 * x).diff(x) == 7 * polygamma(4, 7 * x)

    assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
    assert polygamma(
        2, x).rewrite(harmonic) == 2 * harmonic(x - 1, 3) - 2 * zeta(3)
    ni = Symbol("n", integer=True)
    assert polygamma(
        ni,
        x).rewrite(harmonic) == (-1)**(ni + 1) * (-harmonic(x - 1, ni + 1) +
                                                  zeta(ni + 1)) * factorial(ni)

    # Polygamma of non-negative integer order is unbranched:
    from sympy import exp_polar
    k = Symbol('n', integer=True, nonnegative=True)
    assert polygamma(k, exp_polar(2 * I * pi) * x) == polygamma(k, x)

    # but negative integers are branched!
    k = Symbol('n', integer=True)
    assert polygamma(k,
                     exp_polar(2 * I * pi) *
                     x).args == (k, exp_polar(2 * I * pi) * x)

    # Polygamma of order -1 is loggamma:
    assert polygamma(-1, x) == loggamma(x)

    # But smaller orders are iterated integrals and don't have a special name
    assert polygamma(-2, x).func is polygamma

    # Test a bug
    assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)
예제 #44
0
def digamma_at_2_coefficient(k):
    if k == 0:
        return S(0)
    return ((-1)**(k + 1) * (zeta(k + 1) - 1))
예제 #45
0
 def pdf(self, k):
     s = self.s
     return 1 / (k**s * zeta(s))
예제 #46
0
def tetragamma_at_1_coefficient(k):
    return ((-1)**(k + 1) * (k + 1) * (k + 2) * zeta(k + 3))
예제 #47
0
 def _moment_generating_function(self, t):
     return polylog(self.s, exp(t)) / zeta(self.s)
예제 #48
0
파일: drv_types.py 프로젝트: Lenqth/sympy
 def _characteristic_function(self, t):
     return polylog(self.s, exp(I*t)) / zeta(self.s)
예제 #49
0
파일: test_str.py 프로젝트: Lenqth/sympy
def test_zeta():
    assert str(zeta(3)) == "zeta(3)"
예제 #50
0
def series_small_a_small_b():
    """Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5.

    Be aware of cancellation of poles in b=0 of digamma(b)/Gamma(b) and
    polygamma functions.

    digamma(b)/Gamma(b) = -1 - 2*M_EG*b + O(b^2)
    digamma(b)^2/Gamma(b) = 1/b + 3*M_EG + b*(-5/12*PI^2+7/2*M_EG^2) + O(b^2)
    polygamma(1, b)/Gamma(b) = 1/b + M_EG + b*(1/12*PI^2 + 1/2*M_EG^2) + O(b^2)
    and so on.
    """
    order = 5
    a, b, x, k = symbols("a b x k")
    M_PI, M_EG, M_Z3 = symbols("M_PI M_EG M_Z3")
    c_subs = {pi: M_PI, EulerGamma: M_EG, zeta(3): M_Z3}
    A = []  # terms with a
    X = []  # terms with x
    B = []  # terms with b (polygammas expanded)
    C = []  # terms that generate B
    # Phi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i])
    # B[0] = 1
    # B[k] = sum(C[k] * b**k/k!, k=0..)
    # Note: C[k] can be obtained from a series expansion of 1/gamma(b).
    expression = gamma(b)/sympy.exp(x) * \
        Sum(x**k/factorial(k)/gamma(a*k+b), (k, 0, S.Infinity))

    # nth term of taylor series in a=0: a^n/n! * (d^n Phi(a, b, x)/da^n at a=0)
    for n in range(0, order + 1):
        term = expression.diff(a, n).subs(a, 0).simplify().doit()
        # set the whole bracket involving polygammas to 1
        x_part = (term.subs(polygamma(0, b),
                            1).replace(polygamma, lambda *args: 0))
        # sign convetion: x part always positive
        x_part *= (-1)**n
        # expansion of polygamma part with 1/gamma(b)
        pg_part = term / x_part / gamma(b)
        if n >= 1:
            # Note: highest term is digamma^n
            pg_part = pg_part.replace(
                polygamma, lambda k, x: pg_series(k, x, order + 1 + n))
            pg_part = (pg_part.series(b, 0, n=order + 1 - n).removeO().subs(
                polygamma(2, 1), -2 * zeta(3)).simplify())

        A.append(a**n / factorial(n))
        X.append(horner(x_part))
        B.append(pg_part)

    # Calculate C and put in the k!
    C = sympy.Poly(B[1].subs(c_subs), b).coeffs()
    C.reverse()
    for i in range(len(C)):
        C[i] = (C[i] * factorial(i)).simplify()

    s = "Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5."
    s += "\nPhi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i], i=0..5)\n"
    s += "B[0] = 1\n"
    s += "B[i] = sum(C[k+i-1] * b**k/k!, k=0..)\n"
    s += "\nM_PI = pi"
    s += "\nM_EG = EulerGamma"
    s += "\nM_Z3 = zeta(3)"
    for name, c in zip(['A', 'X'], [A, X]):
        for i in range(len(c)):
            s += f"\n{name}[{i}] = "
            s += str(c[i])
    # For C, do also compute the values numerically
    for i in range(len(C)):
        s += f"\n# C[{i}] = "
        s += str(C[i])
        s += f"\nC[{i}] = "
        s += str(C[i].subs({
            M_EG: EulerGamma,
            M_PI: pi,
            M_Z3: zeta(3)
        }).evalf(17))

    # Does B have the assumed structure?
    s += "\n\nTest if B[i] does have the assumed structure."
    s += "\nC[i] are derived from B[1] allone."
    s += "\nTest B[2] == C[1] + b*C[2] + b^2/2*C[3] + b^3/6*C[4] + .."
    test = sum([b**k / factorial(k) * C[k + 1] for k in range(order - 1)])
    test = (test - B[2].subs(c_subs)).simplify()
    s += f"\ntest successful = {test==S(0)}"
    s += "\nTest B[3] == C[2] + b*C[3] + b^2/2*C[4] + .."
    test = sum([b**k / factorial(k) * C[k + 2] for k in range(order - 2)])
    test = (test - B[3].subs(c_subs)).simplify()
    s += f"\ntest successful = {test==S(0)}"
    return s
예제 #51
0
def digamma_at_1_coefficient(k):
    """Reference: https://dlmf.nist.gov/5.7#E4"""
    if k == 0:
        return digamma(1)
    return ((-1)**(k + 1) * zeta(k + 1))
예제 #52
0
def test_zeta():

    assert zeta(nan) == nan
    assert zeta(x, nan) == nan

    assert zeta(0) == Rational(-1,2)
    assert zeta(0, x) == Rational(1,2) - x

    assert zeta(1) == zoo
    assert zeta(1, 2) == zoo
    assert zeta(1, -7) == zoo
    assert zeta(1, x) == zoo

    assert zeta(2, 0) == pi**2/6
    assert zeta(2, 1) == pi**2/6

    assert zeta(2) == pi**2/6
    assert zeta(4) == pi**4/90
    assert zeta(6) == pi**6/945

    assert zeta(2, 2) == pi**2/6 - 1
    assert zeta(4, 3) == pi**4/90 - Rational(17, 16)
    assert zeta(6, 4) == pi**6/945 - Rational(47449, 46656)

    assert zeta(2, -2) == pi**2/6 + Rational(5, 4)
    assert zeta(4, -3) == pi**4/90 + Rational(1393, 1296)
    assert zeta(6, -4) == pi**6/945 + Rational(3037465, 2985984)

    assert zeta(-1) == -Rational(1, 12)
    assert zeta(-2) == 0
    assert zeta(-3) == Rational(1, 120)
    assert zeta(-4) == 0
    assert zeta(-5) == -Rational(1, 252)

    assert zeta(-1, 3) == -Rational(37, 12)
    assert zeta(-1, 7) == -Rational(253, 12)
    assert zeta(-1, -4) == Rational(119, 12)
    assert zeta(-1, -9) == Rational(539, 12)

    assert zeta(-4, 3) == -17
    assert zeta(-4, -8) == 8772

    assert zeta(0, 0) == -Rational(1, 2)

    assert zeta(0, 1) == -Rational(1, 2)
    assert zeta(0, -1) == Rational(1, 2)

    assert zeta(0, 2) == -Rational(3, 2)
    assert zeta(0, -2) == Rational(3, 2)

    assert zeta(3).evalf(20).epsilon_eq(Float("1.2020569031595942854",20), 1e-19)
예제 #53
0
def trigamma_at_1_coefficient(k):
    return ((-1)**k * (k + 1) * zeta(k + 2))
예제 #54
0
def test_harmonic_limit_fail():
    n = Symbol("n")
    m = Symbol("m")
    # For m > 1:
    assert limit(harmonic(n, m), n, oo) == zeta(m)
예제 #55
0
def test_zeta():
    assert str(zeta(3)) == "zeta(3)"
예제 #56
0
def test_harmonic_limit_fail():
    n = Symbol("n")
    m = Symbol("m")
    # For m > 1:
    assert limit(harmonic(n, m), n, oo) == zeta(m)
예제 #57
0
def test_zeta():
    s = S(5)
    x = Zeta('x', s)
    assert E(x) == zeta(s - 1) / zeta(s)
    assert simplify(
        variance(x)) == (zeta(s) * zeta(s - 2) - zeta(s - 1)**2) / zeta(s)**2
예제 #58
0
def test_zeta_series():
    assert zeta(x, a).series(a, 0, 2) == \
        zeta(x, 0) - x*a*zeta(x + 1, 0) + O(a**2)
예제 #59
0
파일: test_latex.py 프로젝트: Ronn3y/sympy
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left (x \right )}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left (x,y \right )}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}'

    beta = Function('beta')

    # not to be confused with the beta function
    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(beta) == r"\beta"

    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(
        FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(
        polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}', latex(Chi(x)**2)

    assert latex(
        jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(
        gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(
        chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(
        chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(
        0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'
예제 #60
0
def test_riemann_xi_eval():
    assert riemann_xi(2) == pi / 6
    assert riemann_xi(0) == Rational(1, 2)
    assert riemann_xi(1) == Rational(1, 2)
    assert riemann_xi(3).rewrite(zeta) == 3 * zeta(3) / (2 * pi)
    assert riemann_xi(4) == pi**2 / 15