def style_loss(style, gen): assert K.ndim(style) == 3 assert K.ndim(gen) == 3 S = gram_matrix(style) G = gram_matrix(gen) channels = 3 size = img_h * img_w # Euclidean distance of the gram matrices multiplied by the constant return K.sum(K.square(S - G)) / (4. * (channels**2) * (size**2))
def total_variation_loss(x): assert K.ndim(x) == 4 if K.image_data_format() == 'channels_first': a = K.square(x[:, :, :img_h - 1, :img_w - 1] - x[:, :, 1:, :img_w - 1]) b = K.square(x[:, :, :img_h - 1, :img_w - 1] - x[:, :, :img_h - 1, 1:]) else: # Move the image pixel by pixel, and calculate the variance a = K.square(x[:, :img_h - 1, :img_w - 1, :] - x[:, 1:, :img_w - 1, :]) b = K.square(x[:, :img_h - 1, :img_w - 1, :] - x[:, :img_h - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25))
def gram_matrix(x): assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) # Dot product of the flattened feature map and the transpose of the # flattened feature map gram = K.dot(features, K.transpose(features)) return gram
def call(self, x, mask=None): if self.mode == 0 or self.mode == 2: assert self.built, 'Layer must be built before being called' input_shape = K.int_shape(x) reduction_axes = list(range(len(input_shape))) del reduction_axes[self.axis] broadcast_shape = [1] * len(input_shape) broadcast_shape[self.axis] = input_shape[self.axis] mean_batch, var_batch = _moments(x, reduction_axes, shift=None, keep_dims=False) std_batch = (K.sqrt(var_batch + self.epsilon)) r_max_value = K.get_value(self.r_max) r = std_batch / (K.sqrt(self.running_std + self.epsilon)) r = K.stop_gradient(K.clip(r, 1 / r_max_value, r_max_value)) d_max_value = K.get_value(self.d_max) d = (mean_batch - self.running_mean) / K.sqrt(self.running_std + self.epsilon) d = K.stop_gradient(K.clip(d, -d_max_value, d_max_value)) if sorted(reduction_axes) == range(K.ndim(x))[:-1]: x_normed_batch = (x - mean_batch) / std_batch x_normed = (x_normed_batch * r + d) * self.gamma + self.beta else: # need broadcasting broadcast_mean = K.reshape(mean_batch, broadcast_shape) broadcast_std = K.reshape(std_batch, broadcast_shape) broadcast_r = K.reshape(r, broadcast_shape) broadcast_d = K.reshape(d, broadcast_shape) broadcast_beta = K.reshape(self.beta, broadcast_shape) broadcast_gamma = K.reshape(self.gamma, broadcast_shape) x_normed_batch = (x - broadcast_mean) / broadcast_std x_normed = (x_normed_batch * broadcast_r + broadcast_d) * broadcast_gamma + broadcast_beta # explicit update to moving mean and standard deviation self.add_update([ K.moving_average_update(self.running_mean, mean_batch, self.momentum), K.moving_average_update(self.running_std, std_batch**2, self.momentum) ], x) # update r_max and d_max r_val = self.r_max_value / ( 1 + (self.r_max_value - 1) * K.exp(-self.t)) d_val = self.d_max_value / (1 + ( (self.d_max_value / 1e-3) - 1) * K.exp(-(2 * self.t))) self.add_update([ K.update(self.r_max, r_val), K.update(self.d_max, d_val), K.update_add(self.t, K.variable(np.array([self.t_delta]))) ], x) if self.mode == 0: if sorted(reduction_axes) == range(K.ndim(x))[:-1]: x_normed_running = K.batch_normalization( x, self.running_mean, self.running_std, self.beta, self.gamma, epsilon=self.epsilon) else: # need broadcasting broadcast_running_mean = K.reshape(self.running_mean, broadcast_shape) broadcast_running_std = K.reshape(self.running_std, broadcast_shape) broadcast_beta = K.reshape(self.beta, broadcast_shape) broadcast_gamma = K.reshape(self.gamma, broadcast_shape) x_normed_running = K.batch_normalization( x, broadcast_running_mean, broadcast_running_std, broadcast_beta, broadcast_gamma, epsilon=self.epsilon) # pick the normalized form of x corresponding to the training phase # for batch renormalization, inference time remains same as batchnorm x_normed = K.in_train_phase(x_normed, x_normed_running) elif self.mode == 1: # sample-wise normalization m = K.mean(x, axis=self.axis, keepdims=True) std = K.sqrt( K.var(x, axis=self.axis, keepdims=True) + self.epsilon) x_normed_batch = (x - m) / (std + self.epsilon) r_max_value = K.get_value(self.r_max) r = std / (self.running_std + self.epsilon) r = K.stop_gradient(K.clip(r, 1 / r_max_value, r_max_value)) d_max_value = K.get_value(self.d_max) d = (m - self.running_mean) / (self.running_std + self.epsilon) d = K.stop_gradient(K.clip(d, -d_max_value, d_max_value)) x_normed = ((x_normed_batch * r) + d) * self.gamma + self.beta # update r_max and d_max t_val = K.get_value(self.t) r_val = self.r_max_value / ( 1 + (self.r_max_value - 1) * np.exp(-t_val)) d_val = self.d_max_value / (1 + ( (self.d_max_value / 1e-3) - 1) * np.exp(-(2 * t_val))) t_val += float(self.t_delta) self.add_update([ K.update(self.r_max, r_val), K.update(self.d_max, d_val), K.update(self.t, t_val) ], x) return x_normed
def content_loss(content, gen): assert K.ndim(content) == 3 assert K.ndim(gen) == 3 # Euclidean distance return K.sum(K.square(gen - content))