def style_loss(style, gen):
    assert K.ndim(style) == 3
    assert K.ndim(gen) == 3
    S = gram_matrix(style)
    G = gram_matrix(gen)
    channels = 3
    size = img_h * img_w
    # Euclidean distance of the gram matrices multiplied by the constant
    return K.sum(K.square(S - G)) / (4. * (channels**2) * (size**2))
def total_variation_loss(x):
    assert K.ndim(x) == 4
    if K.image_data_format() == 'channels_first':
        a = K.square(x[:, :, :img_h - 1, :img_w - 1] - x[:, :, 1:, :img_w - 1])
        b = K.square(x[:, :, :img_h - 1, :img_w - 1] - x[:, :, :img_h - 1, 1:])
    else:
        # Move the image pixel by pixel, and calculate the variance
        a = K.square(x[:, :img_h - 1, :img_w - 1, :] - x[:, 1:, :img_w - 1, :])
        b = K.square(x[:, :img_h - 1, :img_w - 1, :] - x[:, :img_h - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))
def gram_matrix(x):
    assert K.ndim(x) == 3
    if K.image_data_format() == 'channels_first':
        features = K.flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    # Dot product of the flattened feature map and the transpose of the
    # flattened feature map
    gram = K.dot(features, K.transpose(features))
    return gram
Exemplo n.º 4
0
    def call(self, x, mask=None):
        if self.mode == 0 or self.mode == 2:
            assert self.built, 'Layer must be built before being called'
            input_shape = K.int_shape(x)

            reduction_axes = list(range(len(input_shape)))
            del reduction_axes[self.axis]
            broadcast_shape = [1] * len(input_shape)
            broadcast_shape[self.axis] = input_shape[self.axis]

            mean_batch, var_batch = _moments(x,
                                             reduction_axes,
                                             shift=None,
                                             keep_dims=False)
            std_batch = (K.sqrt(var_batch + self.epsilon))

            r_max_value = K.get_value(self.r_max)
            r = std_batch / (K.sqrt(self.running_std + self.epsilon))
            r = K.stop_gradient(K.clip(r, 1 / r_max_value, r_max_value))

            d_max_value = K.get_value(self.d_max)
            d = (mean_batch - self.running_mean) / K.sqrt(self.running_std +
                                                          self.epsilon)
            d = K.stop_gradient(K.clip(d, -d_max_value, d_max_value))

            if sorted(reduction_axes) == range(K.ndim(x))[:-1]:
                x_normed_batch = (x - mean_batch) / std_batch
                x_normed = (x_normed_batch * r + d) * self.gamma + self.beta
            else:
                # need broadcasting
                broadcast_mean = K.reshape(mean_batch, broadcast_shape)
                broadcast_std = K.reshape(std_batch, broadcast_shape)
                broadcast_r = K.reshape(r, broadcast_shape)
                broadcast_d = K.reshape(d, broadcast_shape)
                broadcast_beta = K.reshape(self.beta, broadcast_shape)
                broadcast_gamma = K.reshape(self.gamma, broadcast_shape)

                x_normed_batch = (x - broadcast_mean) / broadcast_std
                x_normed = (x_normed_batch * broadcast_r +
                            broadcast_d) * broadcast_gamma + broadcast_beta

            # explicit update to moving mean and standard deviation
            self.add_update([
                K.moving_average_update(self.running_mean, mean_batch,
                                        self.momentum),
                K.moving_average_update(self.running_std, std_batch**2,
                                        self.momentum)
            ], x)

            # update r_max and d_max
            r_val = self.r_max_value / (
                1 + (self.r_max_value - 1) * K.exp(-self.t))
            d_val = self.d_max_value / (1 + (
                (self.d_max_value / 1e-3) - 1) * K.exp(-(2 * self.t)))

            self.add_update([
                K.update(self.r_max, r_val),
                K.update(self.d_max, d_val),
                K.update_add(self.t, K.variable(np.array([self.t_delta])))
            ], x)

            if self.mode == 0:
                if sorted(reduction_axes) == range(K.ndim(x))[:-1]:
                    x_normed_running = K.batch_normalization(
                        x,
                        self.running_mean,
                        self.running_std,
                        self.beta,
                        self.gamma,
                        epsilon=self.epsilon)
                else:
                    # need broadcasting
                    broadcast_running_mean = K.reshape(self.running_mean,
                                                       broadcast_shape)
                    broadcast_running_std = K.reshape(self.running_std,
                                                      broadcast_shape)
                    broadcast_beta = K.reshape(self.beta, broadcast_shape)
                    broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
                    x_normed_running = K.batch_normalization(
                        x,
                        broadcast_running_mean,
                        broadcast_running_std,
                        broadcast_beta,
                        broadcast_gamma,
                        epsilon=self.epsilon)

                # pick the normalized form of x corresponding to the training phase
                # for batch renormalization, inference time remains same as batchnorm
                x_normed = K.in_train_phase(x_normed, x_normed_running)

        elif self.mode == 1:
            # sample-wise normalization
            m = K.mean(x, axis=self.axis, keepdims=True)
            std = K.sqrt(
                K.var(x, axis=self.axis, keepdims=True) + self.epsilon)
            x_normed_batch = (x - m) / (std + self.epsilon)

            r_max_value = K.get_value(self.r_max)
            r = std / (self.running_std + self.epsilon)
            r = K.stop_gradient(K.clip(r, 1 / r_max_value, r_max_value))

            d_max_value = K.get_value(self.d_max)
            d = (m - self.running_mean) / (self.running_std + self.epsilon)
            d = K.stop_gradient(K.clip(d, -d_max_value, d_max_value))

            x_normed = ((x_normed_batch * r) + d) * self.gamma + self.beta

            # update r_max and d_max
            t_val = K.get_value(self.t)
            r_val = self.r_max_value / (
                1 + (self.r_max_value - 1) * np.exp(-t_val))
            d_val = self.d_max_value / (1 + (
                (self.d_max_value / 1e-3) - 1) * np.exp(-(2 * t_val)))
            t_val += float(self.t_delta)

            self.add_update([
                K.update(self.r_max, r_val),
                K.update(self.d_max, d_val),
                K.update(self.t, t_val)
            ], x)

        return x_normed
def content_loss(content, gen):
    assert K.ndim(content) == 3
    assert K.ndim(gen) == 3
    # Euclidean distance
    return K.sum(K.square(gen - content))