def load_file_system_library(library_filename): """Loads a TensorFlow plugin, containing file system implementation. Pass `library_filename` to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: None. Raises: RuntimeError: when unable to load the library. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors._make_specific_exception(None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status)
def load_op_library(library_filename): """Loads a TensorFlow plugin, containing custom ops and kernels. Pass "library_filename" to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. When the library is loaded, ops and kernels registered in the library via the REGISTER_* macros are made available in the TensorFlow process. Note that ops with the same name as an existing op are rejected and not registered with the process. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: A python module containing the Python wrappers for Ops defined in the plugin. Raises: RuntimeError: when unable to load the library or get the python wrappers. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) with _OP_LIBRARY_MAP_LOCK: if (error_code == error_codes_pb2.ALREADY_EXISTS and 'has already been loaded' in error_msg and library_filename in _OP_LIBRARY_MAP): return _OP_LIBRARY_MAP[library_filename] # pylint: disable=protected-access raise errors._make_specific_exception(None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status) op_list_str = py_tf.TF_GetOpList(lib_handle) op_list = op_def_pb2.OpList() op_list.ParseFromString(compat.as_bytes(op_list_str)) wrappers = py_tf.GetPythonWrappers(op_list_str) # Get a unique name for the module. module_name = hashlib.md5(wrappers).hexdigest() module = imp.new_module(module_name) # pylint: disable=exec-used exec(wrappers, module.__dict__) # Stash away the library handle for making calls into the dynamic library. module.LIB_HANDLE = lib_handle # OpDefs of the list of ops defined in the library. module.OP_LIST = op_list sys.modules[module_name] = module # Memoize the filename to module mapping. with _OP_LIBRARY_MAP_LOCK: _OP_LIBRARY_MAP[library_filename] = module return module
def load_op_library(library_filename): """Loads a TensorFlow plugin, containing custom ops and kernels. Pass "library_filename" to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. When the library is loaded, ops and kernels registered in the library via the `REGISTER_*` macros are made available in the TensorFlow process. Note that ops with the same name as an existing op are rejected and not registered with the process. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: A python module containing the Python wrappers for Ops defined in the plugin. Raises: RuntimeError: when unable to load the library or get the python wrappers. """ lib_handle = py_tf.TF_LoadLibrary(library_filename) op_list_str = py_tf.TF_GetOpList(lib_handle) op_list = op_def_pb2.OpList() op_list.ParseFromString(compat.as_bytes(op_list_str)) wrappers = py_tf.GetPythonWrappers(op_list_str) # Delete the library handle to release any memory held in C # that are no longer needed. py_tf.TF_DeleteLibraryHandle(lib_handle) # Get a unique name for the module. module_name = hashlib.md5(wrappers).hexdigest() if module_name in sys.modules: return sys.modules[module_name] module = imp.new_module(module_name) # pylint: disable=exec-used exec(wrappers, module.__dict__) # Stash away the library handle for making calls into the dynamic library. module.LIB_HANDLE = lib_handle # OpDefs of the list of ops defined in the library. module.OP_LIST = op_list # Allow this to be recognized by AutoGraph. setattr(module, '_IS_TENSORFLOW_PLUGIN', True) sys.modules[module_name] = module return module
def load_op_library(library_filename): """Loads a TensorFlow plugin, containing custom ops and kernels. Pass "library_filename" to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. Expects the symbols "RegisterOps", "RegisterKernels", and "GetOpList", to be defined in the library. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: A python module containing the Python wrappers for Ops defined in the plugin. Raises: RuntimeError: when unable to load the library or get the python wrappers. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: if py_tf.TF_GetCode(status) != 0: raise RuntimeError(compat.as_text(py_tf.TF_Message(status))) finally: py_tf.TF_DeleteStatus(status) op_list_str = py_tf.TF_GetOpList(lib_handle) op_list = op_def_pb2.OpList() op_list.ParseFromString(compat.as_bytes(op_list_str)) wrappers = py_tf.GetPythonWrappers(op_list_str, len(op_list_str)) # Get a unique name for the module. module_name = hashlib.md5(wrappers).hexdigest() module = imp.new_module(module_name) # pylint: disable=exec-used exec(wrappers, module.__dict__) # Stash away the library handle for making calls into the dynamic library. module.LIB_HANDLE = lib_handle # OpDefs of the list of ops defined in the library. module.OP_LIST = op_list sys.modules[module_name] = module return module
def load_file_system_library(library_filename): """Loads a TensorFlow plugin, containing file system implementation. Pass `library_filename` to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: None. Raises: RuntimeError: when unable to load the library. """ py_tf.TF_LoadLibrary(library_filename)
def load_library(library_location): """Loads a TensorFlow plugin. "library_location" can be a path to a specific shared object, or a folder. If it is a folder, all sahred objects that are named "libtfkernel*" will be loaded. When the library is loaded, kernels registered in the library via the `REGISTER_*` macros are made available in the TensorFlow process. Args: library_location: Path to the plugin or the folder of plugins. Relative or absolute filesystem path to a dynamic library file or folder. Returns: None Raises: OSError: When the file to be loaded is not found. RuntimeError: when unable to load the library. """ if file_io.file_exists(library_location): if file_io.is_directory(library_location): directory_contents = file_io.list_directory(library_location) kernel_libraries = [ os.path.join(library_location, f) for f in directory_contents if _is_shared_object(f) ] else: kernel_libraries = [library_location] for lib in kernel_libraries: py_tf.TF_LoadLibrary(lib) else: raise OSError( errno.ENOENT, 'The file or folder to load kernel libraries from does not exist.', library_location)