コード例 #1
0
def load_file_system_library(library_filename):
    """Loads a TensorFlow plugin, containing file system implementation.

  Pass `library_filename` to a platform-specific mechanism for dynamically
  loading a library. The rules for determining the exact location of the
  library are platform-specific and are not documented here.

  Args:
    library_filename: Path to the plugin.
      Relative or absolute filesystem path to a dynamic library file.

  Returns:
    None.

  Raises:
    RuntimeError: when unable to load the library.
  """
    status = py_tf.TF_NewStatus()
    lib_handle = py_tf.TF_LoadLibrary(library_filename, status)
    try:
        error_code = py_tf.TF_GetCode(status)
        if error_code != 0:
            error_msg = compat.as_text(py_tf.TF_Message(status))
            # pylint: disable=protected-access
            raise errors._make_specific_exception(None, None, error_msg,
                                                  error_code)
            # pylint: enable=protected-access
    finally:
        py_tf.TF_DeleteStatus(status)
コード例 #2
0
ファイル: load_library.py プロジェクト: instadeep/Mobile-ai
def load_op_library(library_filename):
    """Loads a TensorFlow plugin, containing custom ops and kernels.

  Pass "library_filename" to a platform-specific mechanism for dynamically
  loading a library. The rules for determining the exact location of the
  library are platform-specific and are not documented here. When the
  library is loaded, ops and kernels registered in the library via the
  REGISTER_* macros are made available in the TensorFlow process. Note
  that ops with the same name as an existing op are rejected and not
  registered with the process.

  Args:
    library_filename: Path to the plugin.
      Relative or absolute filesystem path to a dynamic library file.

  Returns:
    A python module containing the Python wrappers for Ops defined in
    the plugin.

  Raises:
    RuntimeError: when unable to load the library or get the python wrappers.
  """
    status = py_tf.TF_NewStatus()

    lib_handle = py_tf.TF_LoadLibrary(library_filename, status)
    try:
        error_code = py_tf.TF_GetCode(status)
        if error_code != 0:
            error_msg = compat.as_text(py_tf.TF_Message(status))
            with _OP_LIBRARY_MAP_LOCK:
                if (error_code == error_codes_pb2.ALREADY_EXISTS
                        and 'has already been loaded' in error_msg
                        and library_filename in _OP_LIBRARY_MAP):
                    return _OP_LIBRARY_MAP[library_filename]
            # pylint: disable=protected-access
            raise errors._make_specific_exception(None, None, error_msg,
                                                  error_code)
            # pylint: enable=protected-access
    finally:
        py_tf.TF_DeleteStatus(status)

    op_list_str = py_tf.TF_GetOpList(lib_handle)
    op_list = op_def_pb2.OpList()
    op_list.ParseFromString(compat.as_bytes(op_list_str))
    wrappers = py_tf.GetPythonWrappers(op_list_str)

    # Get a unique name for the module.
    module_name = hashlib.md5(wrappers).hexdigest()
    module = imp.new_module(module_name)
    # pylint: disable=exec-used
    exec(wrappers, module.__dict__)
    # Stash away the library handle for making calls into the dynamic library.
    module.LIB_HANDLE = lib_handle
    # OpDefs of the list of ops defined in the library.
    module.OP_LIST = op_list
    sys.modules[module_name] = module
    # Memoize the filename to module mapping.
    with _OP_LIBRARY_MAP_LOCK:
        _OP_LIBRARY_MAP[library_filename] = module
    return module
コード例 #3
0
def load_op_library(library_filename):
    """Loads a TensorFlow plugin, containing custom ops and kernels.

  Pass "library_filename" to a platform-specific mechanism for dynamically
  loading a library. The rules for determining the exact location of the
  library are platform-specific and are not documented here. When the
  library is loaded, ops and kernels registered in the library via the
  `REGISTER_*` macros are made available in the TensorFlow process. Note
  that ops with the same name as an existing op are rejected and not
  registered with the process.

  Args:
    library_filename: Path to the plugin.
      Relative or absolute filesystem path to a dynamic library file.

  Returns:
    A python module containing the Python wrappers for Ops defined in
    the plugin.

  Raises:
    RuntimeError: when unable to load the library or get the python wrappers.
  """
    lib_handle = py_tf.TF_LoadLibrary(library_filename)

    op_list_str = py_tf.TF_GetOpList(lib_handle)
    op_list = op_def_pb2.OpList()
    op_list.ParseFromString(compat.as_bytes(op_list_str))
    wrappers = py_tf.GetPythonWrappers(op_list_str)

    # Delete the library handle to release any memory held in C
    # that are no longer needed.
    py_tf.TF_DeleteLibraryHandle(lib_handle)

    # Get a unique name for the module.
    module_name = hashlib.md5(wrappers).hexdigest()
    if module_name in sys.modules:
        return sys.modules[module_name]
    module = imp.new_module(module_name)
    # pylint: disable=exec-used
    exec(wrappers, module.__dict__)
    # Stash away the library handle for making calls into the dynamic library.
    module.LIB_HANDLE = lib_handle
    # OpDefs of the list of ops defined in the library.
    module.OP_LIST = op_list
    # Allow this to be recognized by AutoGraph.
    setattr(module, '_IS_TENSORFLOW_PLUGIN', True)
    sys.modules[module_name] = module
    return module
コード例 #4
0
def load_op_library(library_filename):
    """Loads a TensorFlow plugin, containing custom ops and kernels.

  Pass "library_filename" to a platform-specific mechanism for dynamically
  loading a library. The rules for determining the exact location of the
  library are platform-specific and are not documented here.
  Expects the symbols "RegisterOps", "RegisterKernels", and "GetOpList", to be
  defined in the library.

  Args:
    library_filename: Path to the plugin.
      Relative or absolute filesystem path to a dynamic library file.

  Returns:
    A python module containing the Python wrappers for Ops defined in
    the plugin.

  Raises:
    RuntimeError: when unable to load the library or get the python wrappers.
  """
    status = py_tf.TF_NewStatus()

    lib_handle = py_tf.TF_LoadLibrary(library_filename, status)
    try:
        if py_tf.TF_GetCode(status) != 0:
            raise RuntimeError(compat.as_text(py_tf.TF_Message(status)))
    finally:
        py_tf.TF_DeleteStatus(status)

    op_list_str = py_tf.TF_GetOpList(lib_handle)
    op_list = op_def_pb2.OpList()
    op_list.ParseFromString(compat.as_bytes(op_list_str))
    wrappers = py_tf.GetPythonWrappers(op_list_str, len(op_list_str))

    # Get a unique name for the module.
    module_name = hashlib.md5(wrappers).hexdigest()
    module = imp.new_module(module_name)
    # pylint: disable=exec-used
    exec(wrappers, module.__dict__)
    # Stash away the library handle for making calls into the dynamic library.
    module.LIB_HANDLE = lib_handle
    # OpDefs of the list of ops defined in the library.
    module.OP_LIST = op_list
    sys.modules[module_name] = module
    return module
コード例 #5
0
ファイル: load_library.py プロジェクト: linyia01/tensorflow-1
def load_file_system_library(library_filename):
    """Loads a TensorFlow plugin, containing file system implementation.

  Pass `library_filename` to a platform-specific mechanism for dynamically
  loading a library. The rules for determining the exact location of the
  library are platform-specific and are not documented here.

  Args:
    library_filename: Path to the plugin.
      Relative or absolute filesystem path to a dynamic library file.

  Returns:
    None.

  Raises:
    RuntimeError: when unable to load the library.
  """
    py_tf.TF_LoadLibrary(library_filename)
コード例 #6
0
ファイル: load_library.py プロジェクト: linyia01/tensorflow-1
def load_library(library_location):
    """Loads a TensorFlow plugin.

  "library_location" can be a path to a specific shared object, or a folder.
  If it is a folder, all sahred objects that are named "libtfkernel*" will be
  loaded. When the library is loaded, kernels registered in the library via the
  `REGISTER_*` macros are made available in the TensorFlow process.

  Args:
    library_location: Path to the plugin or the folder of plugins.
      Relative or absolute filesystem path to a dynamic library file or folder.

  Returns:
    None

  Raises:
    OSError: When the file to be loaded is not found.
    RuntimeError: when unable to load the library.
  """
    if file_io.file_exists(library_location):
        if file_io.is_directory(library_location):
            directory_contents = file_io.list_directory(library_location)

            kernel_libraries = [
                os.path.join(library_location, f) for f in directory_contents
                if _is_shared_object(f)
            ]
        else:
            kernel_libraries = [library_location]

        for lib in kernel_libraries:
            py_tf.TF_LoadLibrary(lib)

    else:
        raise OSError(
            errno.ENOENT,
            'The file or folder to load kernel libraries from does not exist.',
            library_location)