def test_concat_raises(self): args = {'a': tdb.Scalar(), 'b': tdb.Vector(4), 'c': tdb.Tensor([3, 3])} six.assertRaisesRegex( self, TypeError, 'Shapes for concat don\'t match:', tdb.Pipe, args, tdb.Concat()) args = {'a': tdb.Vector(2), 'b': tdb.Vector(4)} six.assertRaisesRegex( self, TypeError, 'Concat argument.*has rank less than 2.', tdb.Pipe, args, tdb.Concat(concat_dim=1)) args = {'a': tdb.Vector(2, dtype='int32'), 'b': tdb.Vector(4)} six.assertRaisesRegex( self, TypeError, 'Cannot concat tensors of different dtypes: int32 vs. float32', tdb.Pipe, args, tdb.Concat()) args = ((tdb.Scalar(),), (tdb.Scalar(),)) six.assertRaisesRegex( self, TypeError, 'contains nested tuples', tdb.Pipe, args, tdb.Concat()) args = () self.assertRaisesWithLiteralMatch( TypeError, 'Concat requires at least one tensor as input', tdb.Pipe, args, tdb.Concat())
def test_concat_dims(self): record = {'a': [[1.0, 2.0, 3.0]], 'b': [[4.0, 5.0, 6.0]]} block = {'a': tdb.Tensor([1, 3]), 'b': tdb.Tensor([1, 3])} >> tdb.Concat(concat_dim=0) self.assertBuildsConst([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], block, record) block = {'a': tdb.Tensor([1, 3]), 'b': tdb.Tensor([1, 3])} >> tdb.Concat(concat_dim=1) self.assertBuildsConst([[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]], block, record)
def test_metrics_raises(self): sp0 = _pos_neg_block([]) spn = _pos_neg_block([2]) block = {'foo': sp0, 'bar:': spn} >> tdb.Concat() six.assertRaisesRegex( self, TypeError, 'Metric [a-z]+tive has incompatible types', tdc.Compiler.create, block)
def test_hierarchical_rnn(self): char_cell = tdl.ScopedLayer( tf.contrib.rnn.BasicLSTMCell(num_units=16), 'char_cell') word_cell = tdl.ScopedLayer( tf.contrib.rnn.BasicLSTMCell(num_units=32), 'word_cell') char_lstm = (tdb.InputTransform(lambda s: [ord(c) for c in s]) >> tdb.Map(tdb.Scalar('int32') >> tdb.Function(tdl.Embedding(128, 8))) >> tdb.RNN(char_cell)) word_lstm = (tdb.Map(char_lstm >> tdb.GetItem(1) >> tdb.Concat()) >> tdb.RNN(word_cell)) with self.test_session(): word_lstm.eval(['the', 'cat', 'sat', 'on', 'a', 'mat'])
def test_concat_nested(self): block = (tdb.AllOf(tdb.AllOf(tdb.Scalar(), tdb.Scalar()), tdb.AllOf(tdb.Scalar(), tdb.Scalar())) >> tdb.Concat(flatten=True)) self.assertBuildsConst([42.0] * 4, block, 42.0)
def test_concat_scalar(self): block = {'a': tdb.Scalar(), 'b': tdb.Vector(4), 'c': tdb.Scalar()} >> tdb.Concat() self.assertBuildsConst([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], block, {'a': 1.0, 'b': [2.0, 3.0, 4.0, 5.0], 'c': 6.0})
def test_concat(self): block = {'a': tdb.Vector(1), 'b': tdb.Vector(4), 'c': tdb.Vector(1)} >> tdb.Concat() self.assertBuildsConst([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], block, {'a': [1.0], 'b': [2.0, 3.0, 4.0, 5.0], 'c': [6.0]})
def test_record_slice_key(self): b = tdb.Record([ (0, tdb.Scalar()), (slice(1, 3), (tdb.Scalar(), tdb.Scalar()) >> tdb.Concat())]) self.assertBuilds((1., [2., 3.]), b, [1, 2, 3])
def test_composition_connect_raises(self): self.assertRaises(TypeError, tdb.Pipe, tdb.Scalar(), tdb.Concat())
def test_repr(self): goldens = { tdb.Tensor([]): '<td.Tensor dtype=\'float32\' shape=()>', tdb.Tensor([1, 2], 'int32', name='foo'): '<td.Tensor \'foo\' dtype=\'int32\' shape=(1, 2)>', tdb.Scalar('int64'): '<td.Scalar dtype=\'int64\'>', tdb.Vector(42): '<td.Vector dtype=\'float32\' size=42>', tdb.FromTensor(tf.zeros(3)): '<td.FromTensor \'zeros:0\'>', tdb.Function(tf.negative, name='foo'): '<td.Function \'foo\' tf_fn=\'negative\'>', tdb.Identity(): '<td.Identity>', tdb.Identity('foo'): '<td.Identity \'foo\'>', tdb.InputTransform(ord): '<td.InputTransform py_fn=\'ord\'>', tdb.SerializedMessageToTree('foo'): '<td.SerializedMessageToTree \'foo\' ' 'py_fn=\'serialized_message_to_tree\'>', tdb.GetItem(3, 'mu'): '<td.GetItem \'mu\' key=3>', tdb.Length(): '<td.Length dtype=\'float32\'>', tdb.Slice(stop=2): '<td.Slice key=slice(None, 2, None)>', tdb.Slice(stop=2, name='x'): '<td.Slice \'x\' key=slice(None, 2, None)>', tdb.ForwardDeclaration(name='foo')(): '<td.ForwardDeclaration() \'foo\'>', tdb.Composition(name='x').input: '<td.Composition.input \'x\'>', tdb.Composition(name='x').output: '<td.Composition.output \'x\'>', tdb.Composition(name='x'): '<td.Composition \'x\'>', tdb.Pipe(): '<td.Pipe>', tdb.Pipe(tdb.Scalar(), tdb.Identity()): '<td.Pipe>', tdb.Record({}, name='x'): '<td.Record \'x\' ordered=False>', tdb.Record((), name='x'): '<td.Record \'x\' ordered=True>', tdb.AllOf(): '<td.AllOf>', tdb.AllOf(tdb.Identity()): '<td.AllOf>', tdb.AllOf(tdb.Identity(), tdb.Identity()): '<td.AllOf>', tdb.AllOf(name='x'): '<td.AllOf \'x\'>', tdb.AllOf(tdb.Identity(), name='x'): '<td.AllOf \'x\'>', tdb.AllOf(tdb.Identity(), tdb.Identity(), name='x'): '<td.AllOf \'x\'>', tdb.Map(tdb.Scalar(), name='x'): '<td.Map \'x\' element_block=<td.Scalar dtype=\'float32\'>>', tdb.Fold(tdb.Function(tf.add), tf.ones([]), name='x'): '<td.Fold \'x\' combine_block=<td.Function tf_fn=\'add\'> ' 'start_block=<td.FromTensor \'ones:0\'>>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8))): '<td.RNN>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), name='x'): '<td.RNN \'x\'>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), initial_state=tf.ones(8)): '<td.RNN>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), initial_state=tf.ones(8), name='x'): '<td.RNN \'x\'>', tdb.Reduce(tdb.Function(tf.add), name='x'): '<td.Reduce \'x\' combine_block=<td.Function tf_fn=\'add\'>>', tdb.Sum(name='foo'): '<td.Sum \'foo\' combine_block=<td.Function tf_fn=\'add\'>>', tdb.Min(name='foo'): '<td.Min \'foo\' combine_block=<td.Function tf_fn=\'minimum\'>>', tdb.Max(name='foo'): '<td.Max \'foo\' combine_block=<td.Function tf_fn=\'maximum\'>>', tdb.Mean(name='foo'): '<td.Mean \'foo\'>', tdb.OneOf(ord, (tdb.Scalar(), tdb.Scalar()), name='x'): '<td.OneOf \'x\'>', tdb.Optional(tdb.Scalar(), name='foo'): '<td.Optional \'foo\' some_case_block=<td.Scalar dtype=\'float32\'>>', tdb.Concat(1, True, 'x'): '<td.Concat \'x\' concat_dim=1 flatten=True>', tdb.Broadcast(name='x'): '<td.Broadcast \'x\'>', tdb.Zip(name='x'): '<td.Zip \'x\'>', tdb.NGrams(n=42, name='x'): '<td.NGrams \'x\' n=42>', tdb.OneHot(2, 3, name='x'): '<td.OneHot \'x\' dtype=\'float32\' start=2 stop=3>', tdb.OneHot(3): '<td.OneHot dtype=\'float32\' start=0 stop=3>', tdb.OneHotFromList(['a', 'b']): '<td.OneHotFromList>', tdb.OneHotFromList(['a', 'b'], name='foo'): '<td.OneHotFromList \'foo\'>', tdb.Nth(name='x'): '<td.Nth \'x\'>', tdb.Zeros([], 'x'): '<td.Zeros \'x\'>', tdb.Void(): '<td.Void>', tdb.Void('foo'): '<td.Void \'foo\'>', tdm.Metric('foo'): '<td.Metric \'foo\'>'} for block, expected_repr in sorted(six.iteritems(goldens), key=lambda kv: kv[1]): self.assertEqual(repr(block), expected_repr)