Esempio n. 1
0
  def test_concat_raises(self):
    args = {'a': tdb.Scalar(),
            'b': tdb.Vector(4),
            'c': tdb.Tensor([3, 3])}
    six.assertRaisesRegex(
        self, TypeError, 'Shapes for concat don\'t match:',
        tdb.Pipe, args, tdb.Concat())

    args = {'a': tdb.Vector(2),
            'b': tdb.Vector(4)}
    six.assertRaisesRegex(
        self, TypeError, 'Concat argument.*has rank less than 2.',
        tdb.Pipe, args, tdb.Concat(concat_dim=1))

    args = {'a': tdb.Vector(2, dtype='int32'),
            'b': tdb.Vector(4)}
    six.assertRaisesRegex(
        self, TypeError,
        'Cannot concat tensors of different dtypes: int32 vs. float32',
        tdb.Pipe, args, tdb.Concat())

    args = ((tdb.Scalar(),), (tdb.Scalar(),))
    six.assertRaisesRegex(
        self, TypeError, 'contains nested tuples', tdb.Pipe, args, tdb.Concat())

    args = ()
    self.assertRaisesWithLiteralMatch(
        TypeError, 'Concat requires at least one tensor as input',
        tdb.Pipe, args, tdb.Concat())
Esempio n. 2
0
  def test_concat_dims(self):
    record = {'a': [[1.0, 2.0, 3.0]],
              'b': [[4.0, 5.0, 6.0]]}

    block = {'a': tdb.Tensor([1, 3]),
             'b': tdb.Tensor([1, 3])} >> tdb.Concat(concat_dim=0)
    self.assertBuildsConst([[1.0, 2.0, 3.0],
                            [4.0, 5.0, 6.0]],
                           block, record)

    block = {'a': tdb.Tensor([1, 3]),
             'b': tdb.Tensor([1, 3])} >> tdb.Concat(concat_dim=1)
    self.assertBuildsConst([[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]],
                           block, record)
Esempio n. 3
0
 def test_metrics_raises(self):
   sp0 = _pos_neg_block([])
   spn = _pos_neg_block([2])
   block = {'foo': sp0, 'bar:': spn} >> tdb.Concat()
   six.assertRaisesRegex(
       self, TypeError, 'Metric [a-z]+tive has incompatible types',
       tdc.Compiler.create, block)
Esempio n. 4
0
  def test_hierarchical_rnn(self):
    char_cell = tdl.ScopedLayer(
        tf.contrib.rnn.BasicLSTMCell(num_units=16), 'char_cell')
    word_cell = tdl.ScopedLayer(
        tf.contrib.rnn.BasicLSTMCell(num_units=32), 'word_cell')

    char_lstm = (tdb.InputTransform(lambda s: [ord(c) for c in s]) >>
                 tdb.Map(tdb.Scalar('int32') >>
                         tdb.Function(tdl.Embedding(128, 8))) >>
                 tdb.RNN(char_cell))
    word_lstm = (tdb.Map(char_lstm >> tdb.GetItem(1) >> tdb.Concat()) >>
                 tdb.RNN(word_cell))

    with self.test_session():
      word_lstm.eval(['the', 'cat', 'sat', 'on', 'a', 'mat'])
Esempio n. 5
0
 def test_concat_nested(self):
   block = (tdb.AllOf(tdb.AllOf(tdb.Scalar(), tdb.Scalar()),
                      tdb.AllOf(tdb.Scalar(), tdb.Scalar())) >>
            tdb.Concat(flatten=True))
   self.assertBuildsConst([42.0] * 4, block, 42.0)
Esempio n. 6
0
 def test_concat_scalar(self):
   block = {'a': tdb.Scalar(),
            'b': tdb.Vector(4),
            'c': tdb.Scalar()} >> tdb.Concat()
   self.assertBuildsConst([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], block,
                          {'a': 1.0, 'b': [2.0, 3.0, 4.0, 5.0], 'c': 6.0})
Esempio n. 7
0
 def test_concat(self):
   block = {'a': tdb.Vector(1),
            'b': tdb.Vector(4),
            'c': tdb.Vector(1)} >> tdb.Concat()
   self.assertBuildsConst([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], block,
                          {'a': [1.0], 'b': [2.0, 3.0, 4.0, 5.0], 'c': [6.0]})
Esempio n. 8
0
 def test_record_slice_key(self):
   b = tdb.Record([
       (0, tdb.Scalar()),
       (slice(1, 3), (tdb.Scalar(), tdb.Scalar()) >> tdb.Concat())])
   self.assertBuilds((1., [2., 3.]), b, [1, 2, 3])
Esempio n. 9
0
 def test_composition_connect_raises(self):
   self.assertRaises(TypeError, tdb.Pipe, tdb.Scalar(), tdb.Concat())
Esempio n. 10
0
  def test_repr(self):
    goldens = {
        tdb.Tensor([]): '<td.Tensor dtype=\'float32\' shape=()>',
        tdb.Tensor([1, 2], 'int32', name='foo'):
        '<td.Tensor \'foo\' dtype=\'int32\' shape=(1, 2)>',

        tdb.Scalar('int64'): '<td.Scalar dtype=\'int64\'>',

        tdb.Vector(42): '<td.Vector dtype=\'float32\' size=42>',

        tdb.FromTensor(tf.zeros(3)): '<td.FromTensor \'zeros:0\'>',

        tdb.Function(tf.negative,
                     name='foo'): '<td.Function \'foo\' tf_fn=\'negative\'>',

        tdb.Identity(): '<td.Identity>',
        tdb.Identity('foo'): '<td.Identity \'foo\'>',

        tdb.InputTransform(ord): '<td.InputTransform py_fn=\'ord\'>',

        tdb.SerializedMessageToTree('foo'):
        '<td.SerializedMessageToTree \'foo\' '
        'py_fn=\'serialized_message_to_tree\'>',

        tdb.GetItem(3, 'mu'): '<td.GetItem \'mu\' key=3>',

        tdb.Length(): '<td.Length dtype=\'float32\'>',

        tdb.Slice(stop=2): '<td.Slice key=slice(None, 2, None)>',
        tdb.Slice(stop=2, name='x'):
        '<td.Slice \'x\' key=slice(None, 2, None)>',

        tdb.ForwardDeclaration(name='foo')():
        '<td.ForwardDeclaration() \'foo\'>',

        tdb.Composition(name='x').input: '<td.Composition.input \'x\'>',
        tdb.Composition(name='x').output: '<td.Composition.output \'x\'>',
        tdb.Composition(name='x'): '<td.Composition \'x\'>',

        tdb.Pipe(): '<td.Pipe>',
        tdb.Pipe(tdb.Scalar(), tdb.Identity()): '<td.Pipe>',

        tdb.Record({}, name='x'): '<td.Record \'x\' ordered=False>',
        tdb.Record((), name='x'): '<td.Record \'x\' ordered=True>',

        tdb.AllOf(): '<td.AllOf>',
        tdb.AllOf(tdb.Identity()): '<td.AllOf>',
        tdb.AllOf(tdb.Identity(), tdb.Identity()): '<td.AllOf>',

        tdb.AllOf(name='x'): '<td.AllOf \'x\'>',
        tdb.AllOf(tdb.Identity(), name='x'): '<td.AllOf \'x\'>',
        tdb.AllOf(tdb.Identity(), tdb.Identity(), name='x'): '<td.AllOf \'x\'>',

        tdb.Map(tdb.Scalar(), name='x'):
        '<td.Map \'x\' element_block=<td.Scalar dtype=\'float32\'>>',

        tdb.Fold(tdb.Function(tf.add), tf.ones([]), name='x'):
        '<td.Fold \'x\' combine_block=<td.Function tf_fn=\'add\'> '
        'start_block=<td.FromTensor \'ones:0\'>>',

        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8))):
        '<td.RNN>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), name='x'):
        '<td.RNN \'x\'>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)),
                initial_state=tf.ones(8)):
        '<td.RNN>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)),
                initial_state=tf.ones(8), name='x'):
        '<td.RNN \'x\'>',

        tdb.Reduce(tdb.Function(tf.add), name='x'):
        '<td.Reduce \'x\' combine_block=<td.Function tf_fn=\'add\'>>',

        tdb.Sum(name='foo'):
        '<td.Sum \'foo\' combine_block=<td.Function tf_fn=\'add\'>>',

        tdb.Min(name='foo'):
        '<td.Min \'foo\' combine_block=<td.Function tf_fn=\'minimum\'>>',

        tdb.Max(name='foo'):
        '<td.Max \'foo\' combine_block=<td.Function tf_fn=\'maximum\'>>',

        tdb.Mean(name='foo'): '<td.Mean \'foo\'>',

        tdb.OneOf(ord, (tdb.Scalar(), tdb.Scalar()), name='x'):
        '<td.OneOf \'x\'>',

        tdb.Optional(tdb.Scalar(), name='foo'):
        '<td.Optional \'foo\' some_case_block=<td.Scalar dtype=\'float32\'>>',

        tdb.Concat(1, True, 'x'):
        '<td.Concat \'x\' concat_dim=1 flatten=True>',

        tdb.Broadcast(name='x'): '<td.Broadcast \'x\'>',

        tdb.Zip(name='x'): '<td.Zip \'x\'>',

        tdb.NGrams(n=42, name='x'): '<td.NGrams \'x\' n=42>',

        tdb.OneHot(2, 3, name='x'):
        '<td.OneHot \'x\' dtype=\'float32\' start=2 stop=3>',
        tdb.OneHot(3): '<td.OneHot dtype=\'float32\' start=0 stop=3>',

        tdb.OneHotFromList(['a', 'b']): '<td.OneHotFromList>',
        tdb.OneHotFromList(['a', 'b'], name='foo'):
        '<td.OneHotFromList \'foo\'>',

        tdb.Nth(name='x'): '<td.Nth \'x\'>',

        tdb.Zeros([], 'x'): '<td.Zeros \'x\'>',

        tdb.Void(): '<td.Void>',
        tdb.Void('foo'): '<td.Void \'foo\'>',

        tdm.Metric('foo'): '<td.Metric \'foo\'>'}
    for block, expected_repr in sorted(six.iteritems(goldens),
                                       key=lambda kv: kv[1]):
      self.assertEqual(repr(block), expected_repr)