Example #1
0
    def test_crosscorr(self):
        data_local = array([
            array([1.0, 2.0, -4.0, 5.0, 8.0, 3.0, 4.1, 0.9, 2.3]),
            array([2.0, 2.0, -4.0, 5.0, 3.1, 4.5, 8.2, 8.1, 9.1]),
        ])

        sig = array([1.5, 2.1, -4.2, 5.6, 8.1, 3.9, 4.2, 0.3, 2.1])

        data = self.sc.parallelize(zip(range(1, 3), data_local))

        method = CrossCorr(sigfile=sig, lag=0)
        betas = method.calc(data).map(lambda (_, v): v)
        assert(allclose(betas.collect()[0], corrcoef(data_local[0, :], sig)[0, 1]))
        assert(allclose(betas.collect()[1], corrcoef(data_local[1, :], sig)[0, 1]))

        method = CrossCorr(sigfile=sig, lag=2)
        betas = method.calc(data).map(lambda (_, v): v)
        tol = 1E-5  # to handle rounding errors
        assert(allclose(betas.collect()[0], array([-0.18511, 0.03817, 0.99221, 0.06567, -0.25750]), atol=tol))
        assert(allclose(betas.collect()[1], array([-0.35119, -0.14190, 0.44777, -0.00408, 0.45435]), atol=tol))
Example #2
0
    def test_crosscorr(self):
        data_local = array([
            array([1.0, 2.0, -4.0, 5.0, 8.0, 3.0, 4.1, 0.9, 2.3]),
            array([2.0, 2.0, -4.0, 5.0, 3.1, 4.5, 8.2, 8.1, 9.1]),
        ])

        sig = array([1.5, 2.1, -4.2, 5.6, 8.1, 3.9, 4.2, 0.3, 2.1])

        data = self.sc.parallelize(zip(range(1, 3), data_local))

        method = CrossCorr(sigfile=sig, lag=0)
        betas = method.calc(data).map(lambda (_, v): v)
        assert (allclose(betas.collect()[0],
                         corrcoef(data_local[0, :], sig)[0, 1]))
        assert (allclose(betas.collect()[1],
                         corrcoef(data_local[1, :], sig)[0, 1]))

        method = CrossCorr(sigfile=sig, lag=2)
        betas = method.calc(data).map(lambda (_, v): v)
        tol = 1E-5  # to handle rounding errors
        assert (allclose(betas.collect()[0],
                         array([-0.18511, 0.03817, 0.99221, 0.06567,
                                -0.25750]),
                         atol=tol))
        assert (allclose(betas.collect()[1],
                         array(
                             [-0.35119, -0.14190, 0.44777, -0.00408, 0.45435]),
                         atol=tol))
Example #3
0
 def runtest(self):
     method = CrossCorr(sigfile=os.path.join(self.modelfile, "crosscorr"), lag=0)
     betas = method.calc(self.rdd)
     betas.count()
 def runtest(self):
     method = CrossCorr(sigfile=os.path.join(self.modelfile, "crosscorr"),
                        lag=0)
     betas = method.calc(self.rdd)
     betas.count()
Example #5
0
    parser.add_argument("datafile", type=str)
    parser.add_argument("sigfile", type=str)
    parser.add_argument("outputdir", type=str)
    parser.add_argument("lag", type=int)
    parser.add_argument("--preprocess",
                        choices=("raw", "dff", "dff-highpass", "sub"),
                        default="raw",
                        required=False)

    args = parser.parse_args()

    sc = SparkContext(args.master, "crosscorr")

    if args.master != "local":
        egg = glob.glob(os.path.join(os.environ['THUNDER_EGG'], "*.egg"))
        sc.addPyFile(egg[0])

    data = load(sc, args.datafile, args.preprocess).cache()

    outputdir = args.outputdir + "-crosscorr"

    # post-process data with pca if lag greater than 0
    vals = CrossCorr(args.sigfile, args.lag).calc(data)
    if args.lag is not 0:
        out = PCA(2).fit(vals)
        save(out.comps, outputdir, "comps", "matlab")
        save(out.latent, outputdir, "latent", "matlab")
        save(out.scores, outputdir, "scores", "matlab")
    else:
        save(vals, outputdir, "betas", "matlab")