def test_crosscorr(self): data_local = array([ array([1.0, 2.0, -4.0, 5.0, 8.0, 3.0, 4.1, 0.9, 2.3]), array([2.0, 2.0, -4.0, 5.0, 3.1, 4.5, 8.2, 8.1, 9.1]), ]) sig = array([1.5, 2.1, -4.2, 5.6, 8.1, 3.9, 4.2, 0.3, 2.1]) data = self.sc.parallelize(zip(range(1, 3), data_local)) method = CrossCorr(sigfile=sig, lag=0) betas = method.calc(data).map(lambda (_, v): v) assert(allclose(betas.collect()[0], corrcoef(data_local[0, :], sig)[0, 1])) assert(allclose(betas.collect()[1], corrcoef(data_local[1, :], sig)[0, 1])) method = CrossCorr(sigfile=sig, lag=2) betas = method.calc(data).map(lambda (_, v): v) tol = 1E-5 # to handle rounding errors assert(allclose(betas.collect()[0], array([-0.18511, 0.03817, 0.99221, 0.06567, -0.25750]), atol=tol)) assert(allclose(betas.collect()[1], array([-0.35119, -0.14190, 0.44777, -0.00408, 0.45435]), atol=tol))
def test_crosscorr(self): data_local = array([ array([1.0, 2.0, -4.0, 5.0, 8.0, 3.0, 4.1, 0.9, 2.3]), array([2.0, 2.0, -4.0, 5.0, 3.1, 4.5, 8.2, 8.1, 9.1]), ]) sig = array([1.5, 2.1, -4.2, 5.6, 8.1, 3.9, 4.2, 0.3, 2.1]) data = self.sc.parallelize(zip(range(1, 3), data_local)) method = CrossCorr(sigfile=sig, lag=0) betas = method.calc(data).map(lambda (_, v): v) assert (allclose(betas.collect()[0], corrcoef(data_local[0, :], sig)[0, 1])) assert (allclose(betas.collect()[1], corrcoef(data_local[1, :], sig)[0, 1])) method = CrossCorr(sigfile=sig, lag=2) betas = method.calc(data).map(lambda (_, v): v) tol = 1E-5 # to handle rounding errors assert (allclose(betas.collect()[0], array([-0.18511, 0.03817, 0.99221, 0.06567, -0.25750]), atol=tol)) assert (allclose(betas.collect()[1], array( [-0.35119, -0.14190, 0.44777, -0.00408, 0.45435]), atol=tol))
def runtest(self): method = CrossCorr(sigfile=os.path.join(self.modelfile, "crosscorr"), lag=0) betas = method.calc(self.rdd) betas.count()
parser.add_argument("datafile", type=str) parser.add_argument("sigfile", type=str) parser.add_argument("outputdir", type=str) parser.add_argument("lag", type=int) parser.add_argument("--preprocess", choices=("raw", "dff", "dff-highpass", "sub"), default="raw", required=False) args = parser.parse_args() sc = SparkContext(args.master, "crosscorr") if args.master != "local": egg = glob.glob(os.path.join(os.environ['THUNDER_EGG'], "*.egg")) sc.addPyFile(egg[0]) data = load(sc, args.datafile, args.preprocess).cache() outputdir = args.outputdir + "-crosscorr" # post-process data with pca if lag greater than 0 vals = CrossCorr(args.sigfile, args.lag).calc(data) if args.lag is not 0: out = PCA(2).fit(vals) save(out.comps, outputdir, "comps", "matlab") save(out.latent, outputdir, "latent", "matlab") save(out.scores, outputdir, "scores", "matlab") else: save(vals, outputdir, "betas", "matlab")