def foo(): n = 3 total_num = 5 prime_num = 0 while True: bottom_left = n**2 - n + 1 upper_left = bottom_left - n + 1 upper_right = upper_left - n + 1 if is_prime(bottom_left): prime_num += 1 if is_prime(upper_left): prime_num += 1 if is_prime(upper_right): prime_num += 1 if (prime_num * 1.0) / total_num < 0.1: break n += 2 total_num += 4 return n
def foo(): for n in reversed(range(1, 10)): digit_coll = reversed([str(i) for i in range(1, n+1)]) for i in itertools.permutations(digit_coll, n): num = int(''.join(i)) if is_prime(num): return num
def foo(): family_size = 8 for num in (i for i in range(1000000) if is_prime(i)): for sig in get_signiture(num): current_familiy_size = 0 missed = 0 first_prime_in_family = None for i in '0123456789': family_candidate = int(sig.replace('*', i)) if len(str(family_candidate)) == len(sig) and is_prime(family_candidate): current_familiy_size += 1 if first_prime_in_family is None: first_prime_in_family = family_candidate if current_familiy_size == family_size: return first_prime_in_family
def foo(): n = 2 while True: odd_num = 2 * n - 1 if is_prime(odd_num): n += 1 continue i = 1 twice_a_square = 2 * (i ** 2) while odd_num > twice_a_square: if is_prime(odd_num - twice_a_square): break else: i += 1 twice_a_square = 2 * (i ** 2) if odd_num <= twice_a_square: return odd_num else: n += 1
def main(): cache = {} max_ratio = 1 n_max = 1000000 max_val = 1 for n in ( i for i in xrange(2, n_max+1) if is_prime(i) ): if max_val * n <= n_max: max_val *= n else: break print max_val
def find_prime_factor_num(num): count = 0 for i in prime_less_than_one_thousand: if is_prime(num) or num == 1: count += 1 break if num % i == 0: count += 1 while num % i == 0: num = num / i return count
def foo(): candidate_coll = [] for i in range(1000, 10000): num = int(i) if is_prime(num): candidate_coll.append(num) candidate_set = set(candidate_coll) for i in range(len(candidate_coll)): for j in range(i+1, len(candidate_coll)): x, y = candidate_coll[i], candidate_coll[j] z = y + y - x if z in candidate_set and is_anagram([x, y, z]) and (x, y, z) != (1487, 4817, 8147): print x, y, z return ''.join([str(x), str(y), str(z)])
def main(): prime_less_than_ten_thousand = [i for i in range(2, 10000) if is_prime(i)] upper_bound = 50000000 solution_coll = set() for x in prime_less_than_ten_thousand: x_square = x*x if x_square > upper_bound: break for y in prime_less_than_ten_thousand: y_cubic = y*y*y if y_cubic > upper_bound: break for z in prime_less_than_ten_thousand: z_fourth = (z*z)**2 if z_fourth > upper_bound: break val = x_square + y_cubic + z_fourth if val > upper_bound: break solution_coll.add(x_square + y_cubic + z_fourth) print len(solution_coll)
def foo(): prime_less_than_thousand = [i for i in range(10000) if str(i)[-1] in '1379' and is_prime(i)] prime_table = {} print 'loaded' for i in prime_less_than_thousand: for j in prime_less_than_thousand: if i >= j: continue if is_prime_set((i, j)): prime_table[i] = prime_table.get(i, []) prime_table[i].append(j) min_val = -1 print 'start' n = 5 for key, val in prime_table.items(): if len(val) >= n-1: for g in find_group(set(val), n-1, prime_table): print (key,) + g, key + sum(g) if min_val == -1 or min_val > key + sum(g): min_val = key + sum(g) return min_val
def infinite_prime_list(): n = 2 while True: if is_prime(n): yield n n += 1
def is_prime_set(prime_set): for prime_pair in itertools.permutations(prime_set, 2): if not is_prime(int(str(prime_pair[0]) + str(prime_pair[1]))): return False return True
def enterPrime(self, ctx: JaRParser.PrimeContext): if prime.is_prime(self.stack.pop()): self.stack.push(True) else: self.stack.push(False)
#! /usr/bin/python from util.prime import is_prime prime_less_than_one_thousand = [ i for i in range(1000) if is_prime(i)] def find_prime_factor_num(num): count = 0 for i in prime_less_than_one_thousand: if is_prime(num) or num == 1: count += 1 break if num % i == 0: count += 1 while num % i == 0: num = num / i return count def foo(): num = 600 count = 0 num_of_prime_factor = 4 while True: if find_prime_factor_num(num) == num_of_prime_factor: count += 1 if count == num_of_prime_factor: