Example #1
0
def opt_sk(model, selflabels_in, epoch):
    if args.hc == 1:
        PS = np.zeros((len(trainloader.dataset), args.ncl))
    else:
        PS_pre = np.zeros((len(trainloader.dataset), knn_dim))
    for batch_idx, (data, _, _selected) in enumerate(trainloader):
        data = data.cuda()
        if args.hc == 1:
            p = nn.functional.softmax(model(data), 1)
            PS[_selected, :] = p.detach().cpu().numpy()
        else:
            p = model(data)
            PS_pre[_selected, :] = p.detach().cpu().numpy()
    if args.hc == 1:
        selflabels = optimize_L_sk(PS)
    else:
        _nmis = np.zeros(args.hc)
        nh = epoch % args.hc  # np.random.randint(args.hc)
        logger.info("computing head {}".format(nh))
        tl = getattr(model, "top_layer{}".format(nh))
        # do the forward pass:
        PS = (PS_pre @ tl.weight.cpu().numpy().T + tl.bias.cpu().numpy())
        PS = py_softmax(PS, 1)
        selflabels_ = optimize_L_sk(PS)
        selflabels_in[nh] = selflabels_
        selflabels = selflabels_in
    return selflabels
Example #2
0
def opt_sk(model, selflabels_in, epoch):
    if args.hc == 1:
        PS = np.zeros((len(trainloader.dataset), args.ncl))
    else:
        PS_pre = np.zeros((len(trainloader.dataset), knn_dim))
    for batch_idx, (data, _, _selected) in enumerate(trainloader):
        data = data.cuda()
        if args.hc == 1:
            p = nn.functional.softmax(model(data), 1)
            PS[_selected, :] = p.detach().cpu().numpy()
        else:
            p = model(data)
            PS_pre[_selected, :] = p.detach().cpu().numpy()
    if args.hc == 1:
        cost, selflabels = optimize_L_sk(PS)
        _costs = [cost]
    else:
        _nmis = np.zeros(args.hc)
        _costs = np.zeros(args.hc)
        nh = epoch % args.hc  # np.random.randint(args.hc)
        print("computing head %s " % nh, end="\r", flush=True)
        tl = getattr(model, "top_layer%d" % nh)
        # do the forward pass:
        PS = (PS_pre @ tl.weight.cpu().numpy().T + tl.bias.cpu().numpy())
        PS = py_softmax(PS, 1)
        c, selflabels_ = optimize_L_sk(PS)
        _costs[nh] = c
        selflabels_in[nh] = selflabels_
        selflabels = selflabels_in
    return selflabels
Example #3
0
def cpu_sk(self):
    """ Sinkhorn Knopp optimization on CPU
        * stores activations to RAM
        * does matrix-vector multiplies on CPU
        * slower than GPU
    """
    # 1. aggregate inputs:
    N = len(self.pseudo_loader.dataset)
    if self.num_heads == 1:
        self.PS = np.zeros((N, self.num_clusters_per_head), dtype=self.dtype)
    else:
        self.PS_pre = np.zeros((N, self.presize), dtype=self.dtype)
    now = time.time()
    l_dl = len(self.pseudo_loader)
    time.time()
    batch_time = MovingAverage(intertia=0.9)
    self.model.headcount = 1
    for batch_idx, (data, _, _selected) in enumerate(self.pseudo_loader):
        data = data.to(self.device)
        mass = data.size(0)
        if self.num_heads == 1:
            p = nn.functional.softmax(self.model(data), 1)
            self.PS[_selected, :] = p.detach().cpu().numpy().astype(self.dtype)
        else:
            p = self.model(data)
            self.PS_pre[_selected, :] = p.detach().cpu().numpy().astype(self.dtype)
        batch_time.update(time.time() - now)
        now = time.time()
        if batch_idx % 50 == 0:
            print(f"Aggregating batch {batch_idx:03}/{l_dl}, speed: {mass / batch_time.avg:04.1f}Hz",
                  end='\r', flush=True)
    self.model.headcount = self.num_heads
    print("Aggreg of outputs  took {0:.2f} min".format((time.time() - now) / 60.), flush=True)

    # 2. solve label assignment via sinkhorn-knopp:
    if self.num_heads == 1:
        optimize_L_sk(self, nh=0)
    else:
        for nh in range(self.num_heads):
            print(f"computing head {nh} ", end="\r", flush=True)
            tl = getattr(self.model, f"top_layer{nh:d}")
            time_mat = time.time()

            # clear memory
            try:
                del self.PS
            except:
                pass

            # apply last FC layer (a matmul and adding of bias)
            self.PS = (self.PS_pre @ tl.weight.cpu().numpy().T.astype(self.dtype)
                       + tl.bias.cpu().numpy().astype(self.dtype))
            print(f"matmul took {(time.time() - time_mat) / 60:.2f}min", flush=True)
            self.PS = py_softmax(self.PS, 1)
            optimize_L_sk(self, nh=nh)
    return