Example #1
0
    def run(self, commands):
        self.setup_files["input.deck"] = util.decks.input_deck(solver=self.solver,
            num_cells_x=36, num_cells_y=74, a_x=-1.55, b_x=1.45, a_y=-1.62, b_y=1.38,
            t_final=1.03, sigma=1.111, init_cond = self.initcond,
            gaussian_sigma=self.gaussian_sigma, num_mpi_partitions_x=self.xNodes,
            num_mpi_partitions_y=self.yNodes)
        with util.ResetFile(*(self.initial_paths + self.current_paths)):
            util.right(self.log_path, "execution time:")
            util.tee(self.log_path, " " * 10, wait=True)
            super(RegressionTest, self).run(commands)
            util.tee(self.log_path, "")
            self.initial = util.formats.Composite(self.parser,
                self.initial_path, self.xNodes, self.yNodes)
            self.current = util.formats.Composite(self.parser,
                self.current_path, self.xNodes, self.yNodes)
            self.reference = self.parser(self.reference_path)

        self.show_results()

        return self.current
Example #2
0
def convergence_test(target, source, env):
    try:
        util.tee(str(target[0]), "convergence tests:")
        for s in SOLVER:
            if s == "kinetic":
                util.bullet(str(target[0]), "%s" % s, wait=False)
                KineticConvergenceTest(str(target[0])).run([os.path.abspath(str(source[0]))], 5)
            elif s == "moment":
                for f in MOMENT_FILTER:
                    util.bullet(str(target[0]), "%s(%s)" % (s, f), wait=False)
                    MomentConvergenceTest(str(target[0]), f).run([os.path.abspath(str(source[0]))], 5)
            elif s == "momopt":
                for t in MOMOPT_TYPE:
                    util.bullet(str(target[0]), "%s(%s)" % (s, t), wait=False)
                    MomoptConvergenceTest(str(target[0]), t).run([os.path.abspath(str(source[0]))], 5)
    except:
        try:
            os.unlink(str(target[0]))
        except:
            pass
        raise
Example #3
0
def regression_test(target, source, env):
    try:
        util.tee(str(target[0]), "regression tests:")
        for p in [str(x) for x in source]:
            if p.startswith("solver_mpi"):
                commands = [["mpirun", "-np", "4", p]]
                composite = True
            else:
                commands = [os.path.abspath(p)]
                composite = False
            for s in SOLVER:
                for i in INITCOND:
                    if s == "kinetic":
                        util.bullet(str(target[0]), "%s,%s,%s" % (p, s, i), wait=False)
                        if composite:
                            KineticCompositeRegressionTest(str(target[0]), i).run(commands)
                        else:
                            KineticRegressionTest(str(target[0]), i).run(commands)
                    elif s == "moment":
                        for f in MOMENT_FILTER:
                            util.bullet(str(target[0]), "%s,%s,%s(%s)" % (p, s, i, f), wait=False)
                            if composite:
                                MomentCompositeRegressionTest(str(target[0]), f, i).run(commands)
                            else:
                                MomentRegressionTest(str(target[0]), f, i).run(commands)
                    elif s == "momopt":
                        for t in MOMOPT_TYPE:
                            util.bullet(str(target[0]), "%s,%s,%s(%s)" % (p, s, i, t), wait=False)
                            if composite:
                                MomoptCompositeRegressionTest(str(target[0]), t, i).run(commands)
                            else:
                                MomoptRegressionTest(str(target[0]), t, i).run(commands)
    except:
        try:
            os.unlink(str(target[0]))
        except:
            pass
        raise
Example #4
0
    def run(self, commands):
        self.setup_files["input.deck"] = util.decks.input_deck(solver=self.solver,
            num_cells_x=36, num_cells_y=74, a_x=-1.55, b_x=1.45, a_y=-1.62, b_y=1.38,
            t_final=1.03, sigma=1.111, init_cond = self.initcond,
            gaussian_sigma=self.gaussian_sigma)
        with util.ResetFile(self.current_path, self.initial_path):
            util.right(self.log_path, "execution time:")
            util.tee(self.log_path, " " * 10, wait=True)
            super(RegressionTest, self).run(commands)
            util.tee(self.log_path, "")
            self.initial = self.parser(self.initial_path)
            self.current = self.parser(self.current_path)
            if REGENERATE:
                try:
                    os.makedirs(os.path.dirname(self.reference_path))
                except OSError:
                    pass
                shutil.copyfile(self.current_path, self.reference_path)
            self.reference = self.parser(self.reference_path)

        self.show_results()

        return self.current
Example #5
0
 def run(self,input,**k):
     c = self.config
     cmd = '%s -l %g -u %g ' % (svm_scale_pathname, c.lower, c.upper)
     if c.y_lower:
         cmd += "-y %g %g " % (c.y_lower, c.y_upper)
     if k['scale info input']:
         cmd += '-r %s ' % k['scale info input'].pathname
     filename = tempfile.mktemp()
     sio = LibsvmScaleFile(filename,autodel=True)
     cmd += '-s %s ' % filename
     cmd += input.pathname        
     log = self.callback.log
     log('# Running %s\n' % cmd) 
     t = util.tee()
     util.run_command(cmd,t,log)
     return {'output': LibsvmInputFile(t.get_filename(),autodel=True),
             'scale info output': sio}
Example #6
0
 def run(self,**k):                   
     input = k['training data']
     if k['optional parameter']:
         self.config.__dict__.update(k['optional parameter'].get_data())
     filename = tempfile.mktemp()
     cmd = self.make_command(input.pathname, filename)
     log = self.callback.log
     log('# Running %s\n' % cmd)
     t = util.tee(log)
     util.run_command(cmd,t,t)
     
     if self.config.fold == 0:
         m = LibsvmModelFile(filename,autodel=True)
     else:
         m = None    # no model file while doing cv
         
     return {'stdout/stderr': TextFile(t.get_filename(), autodel=True),
             'model': m }
Example #7
0
 def run(self, input, **k):
     c = self.config
     cmd = '%s -l %g -u %g ' % (svm_scale_pathname, c.lower, c.upper)
     if c.y_lower:
         cmd += "-y %g %g " % (c.y_lower, c.y_upper)
     if k['scale info input']:
         cmd += '-r %s ' % k['scale info input'].pathname
     filename = tempfile.mktemp()
     sio = LibsvmScaleFile(filename, autodel=True)
     cmd += '-s %s ' % filename
     cmd += input.pathname
     log = self.callback.log
     log('# Running %s\n' % cmd)
     t = util.tee()
     util.run_command(cmd, t, log)
     return {
         'output': LibsvmInputFile(t.get_filename(), autodel=True),
         'scale info output': sio
     }
Example #8
0
    def run(self, **k):
        input = k['training data']
        if k['optional parameter']:
            self.config.__dict__.update(k['optional parameter'].get_data())
        filename = tempfile.mktemp()
        cmd = self.make_command(input.pathname, filename)
        log = self.callback.log
        log('# Running %s\n' % cmd)
        t = util.tee(log)
        util.run_command(cmd, t, t)

        if self.config.fold == 0:
            m = LibsvmModelFile(filename, autodel=True)
        else:
            m = None  # no model file while doing cv

        return {
            'stdout/stderr': TextFile(t.get_filename(), autodel=True),
            'model': m
        }
Example #9
0
 def run(self,**k):
     input = k['training data']
     out_filename = tempfile.mktemp()
     png_filename = tempfile.mktemp()
     c = self.config
     cmd = "%s -svmtrain %s " % (grid_pathname, svm_train_pathname)
     cmd += "-gnuplot %s -out %s " % (gnuplot_pathname, out_filename)
     cmd += "-png %s " % png_filename
     cmd += "-log2c %s,%s,%s " % (c.c_begin, c.c_end, c.c_step)
     cmd += "-log2g %s,%s,%s " % (c.g_begin, c.g_end, c.g_step)
     cmd += input.pathname
     log = self.callback.log
     log('# Running %s\n' % cmd) 
     t = util.tee(log)
     util.run_command(cmd,t,t)
     best_c, best_g, best_rate = map(float,open(t.get_filename()).readlines()[-1].split())
     return {'contour': ImageFile(png_filename,autodel=True),
             'result': TextFile(out_filename,autodel=True),
             'stdout/stderr': TextFile(t.get_filename(),autodel=True),
             'best parameter': ConfigData(cost=best_c,gamma=best_g)}