def train_rcnn(): """Training RCNN model.""" # Load sentences, labels, and training parameters logger.info("✔︎ Loading data...") logger.info("✔︎ Training data processing...") train_data = dh.load_data_and_labels(FLAGS.training_data_file, FLAGS.num_classes, FLAGS.embedding_dim, data_aug_flag=False) logger.info("✔︎ Validation data processing...") val_data = dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.num_classes, FLAGS.embedding_dim, data_aug_flag=False) logger.info("Recommended padding Sequence length is: {0}".format(FLAGS.pad_seq_len)) logger.info("✔︎ Training data padding...") x_train, y_train = dh.pad_data(train_data, FLAGS.pad_seq_len) logger.info("✔︎ Validation data padding...") x_val, y_val = dh.pad_data(val_data, FLAGS.pad_seq_len) # Build vocabulary VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim) pretrained_word2vec_matrix = dh.load_word2vec_matrix(VOCAB_SIZE, FLAGS.embedding_dim) # Build a graph and rcnn object with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): rcnn = TextRCNN( sequence_length=FLAGS.pad_seq_len, num_classes=FLAGS.num_classes, vocab_size=VOCAB_SIZE, lstm_hidden_size=FLAGS.lstm_hidden_size, fc_hidden_size=FLAGS.fc_hidden_size, embedding_size=FLAGS.embedding_dim, embedding_type=FLAGS.embedding_type, filter_sizes=list(map(int, FLAGS.filter_sizes.split(','))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda, pretrained_embedding=pretrained_word2vec_matrix) # Define training procedure with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate, global_step=rcnn.global_step, decay_steps=FLAGS.decay_steps, decay_rate=FLAGS.decay_rate, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) grads, vars = zip(*optimizer.compute_gradients(rcnn.loss)) grads, _ = tf.clip_by_global_norm(grads, clip_norm=FLAGS.norm_ratio) train_op = optimizer.apply_gradients(zip(grads, vars), global_step=rcnn.global_step, name="train_op") # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in zip(grads, vars): if g is not None: grad_hist_summary = tf.summary.histogram("{0}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar("{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries if FLAGS.train_or_restore == 'R': MODEL = input("☛ Please input the checkpoints model you want to restore, " "it should be like(1490175368): ") # The model you want to restore while not (MODEL.isdigit() and len(MODEL) == 10): MODEL = input("✘ The format of your input is illegal, please re-input: ") logger.info("✔︎ The format of your input is legal, now loading to next step...") out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", MODEL)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) else: timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) best_checkpoint_dir = os.path.abspath(os.path.join(out_dir, "bestcheckpoints")) # Summaries for loss loss_summary = tf.summary.scalar("loss", rcnn.loss) # Train summaries train_summary_op = tf.summary.merge([loss_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph) # Validation summaries validation_summary_op = tf.summary.merge([loss_summary]) validation_summary_dir = os.path.join(out_dir, "summaries", "validation") validation_summary_writer = tf.summary.FileWriter(validation_summary_dir, sess.graph) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir, num_to_keep=3, maximize=True) if FLAGS.train_or_restore == 'R': # Load rcnn model logger.info("✔︎ Loading model...") checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) logger.info(checkpoint_file) # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) else: if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # Embedding visualization config config = projector.ProjectorConfig() embedding_conf = config.embeddings.add() embedding_conf.tensor_name = "embedding" embedding_conf.metadata_path = FLAGS.metadata_file projector.visualize_embeddings(train_summary_writer, config) projector.visualize_embeddings(validation_summary_writer, config) # Save the embedding visualization saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt")) current_step = sess.run(rcnn.global_step) def train_step(x_batch, y_batch): """A single training step""" feed_dict = { rcnn.input_x: x_batch, rcnn.input_y: y_batch, rcnn.dropout_keep_prob: FLAGS.dropout_keep_prob, rcnn.is_training: True } _, step, summaries, loss = sess.run( [train_op, rcnn.global_step, train_summary_op, rcnn.loss], feed_dict) logger.info("step {0}: loss {1:g}".format(step, loss)) train_summary_writer.add_summary(summaries, step) def validation_step(x_val, y_val, writer=None): """Evaluates model on a validation set""" batches_validation = dh.batch_iter(list(zip(x_val, y_val)), FLAGS.batch_size, 1) # Predict classes by threshold or topk ('ts': threshold; 'tk': topk) eval_counter, eval_loss = 0, 0.0 eval_pre_tk = [0.0] * FLAGS.top_num eval_rec_tk = [0.0] * FLAGS.top_num eval_F_tk = [0.0] * FLAGS.top_num true_onehot_labels = [] predicted_onehot_scores = [] predicted_onehot_labels_ts = [] predicted_onehot_labels_tk = [[] for _ in range(FLAGS.top_num)] for batch_validation in batches_validation: x_batch_val, y_batch_val = zip(*batch_validation) feed_dict = { rcnn.input_x: x_batch_val, rcnn.input_y: y_batch_val, rcnn.dropout_keep_prob: 1.0, rcnn.is_training: False } step, summaries, scores, cur_loss = sess.run( [rcnn.global_step, validation_summary_op, rcnn.scores, rcnn.loss], feed_dict) # Prepare for calculating metrics for i in y_batch_val: true_onehot_labels.append(i) for j in scores: predicted_onehot_scores.append(j) # Predict by threshold batch_predicted_onehot_labels_ts = \ dh.get_onehot_label_threshold(scores=scores, threshold=FLAGS.threshold) for k in batch_predicted_onehot_labels_ts: predicted_onehot_labels_ts.append(k) # Predict by topK for top_num in range(FLAGS.top_num): batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(scores=scores, top_num=top_num+1) for i in batch_predicted_onehot_labels_tk: predicted_onehot_labels_tk[top_num].append(i) eval_loss = eval_loss + cur_loss eval_counter = eval_counter + 1 if writer: writer.add_summary(summaries, step) eval_loss = float(eval_loss / eval_counter) # Calculate Precision & Recall & F1 (threshold & topK) eval_pre_ts = precision_score(y_true=np.array(true_onehot_labels), y_pred=np.array(predicted_onehot_labels_ts), average='micro') eval_rec_ts = recall_score(y_true=np.array(true_onehot_labels), y_pred=np.array(predicted_onehot_labels_ts), average='micro') eval_F_ts = f1_score(y_true=np.array(true_onehot_labels), y_pred=np.array(predicted_onehot_labels_ts), average='micro') for top_num in range(FLAGS.top_num): eval_pre_tk[top_num] = precision_score(y_true=np.array(true_onehot_labels), y_pred=np.array(predicted_onehot_labels_tk[top_num]), average='micro') eval_rec_tk[top_num] = recall_score(y_true=np.array(true_onehot_labels), y_pred=np.array(predicted_onehot_labels_tk[top_num]), average='micro') eval_F_tk[top_num] = f1_score(y_true=np.array(true_onehot_labels), y_pred=np.array(predicted_onehot_labels_tk[top_num]), average='micro') # Calculate the average AUC eval_auc = roc_auc_score(y_true=np.array(true_onehot_labels), y_score=np.array(predicted_onehot_scores), average='micro') # Calculate the average PR eval_prc = average_precision_score(y_true=np.array(true_onehot_labels), y_score=np.array(predicted_onehot_scores), average='micro') return eval_loss, eval_auc, eval_prc, eval_rec_ts, eval_pre_ts, eval_F_ts, \ eval_rec_tk, eval_pre_tk, eval_F_tk # Generate batches batches_train = dh.batch_iter( list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) num_batches_per_epoch = int((len(x_train) - 1) / FLAGS.batch_size) + 1 # Training loop. For each batch... for batch_train in batches_train: x_batch_train, y_batch_train = zip(*batch_train) train_step(x_batch_train, y_batch_train) current_step = tf.train.global_step(sess, rcnn.global_step) if current_step % FLAGS.evaluate_every == 0: logger.info("\nEvaluation:") eval_loss, eval_auc, eval_prc, \ eval_rec_ts, eval_pre_ts, eval_F_ts, eval_rec_tk, eval_pre_tk, eval_F_tk = \ validation_step(x_val, y_val, writer=validation_summary_writer) logger.info("All Validation set: Loss {0:g} | AUC {1:g} | AUPRC {2:g}" .format(eval_loss, eval_auc, eval_prc)) # Predict by threshold logger.info("☛ Predict by threshold: Precision {0:g}, Recall {1:g}, F {2:g}" .format(eval_pre_ts, eval_rec_ts, eval_F_ts)) # Predict by topK logger.info("☛ Predict by topK:") for top_num in range(FLAGS.top_num): logger.info("Top{0}: Precision {1:g}, Recall {2:g}, F {3:g}" .format(top_num+1, eval_pre_tk[top_num], eval_rec_tk[top_num], eval_F_tk[top_num])) best_saver.handle(eval_prc, sess, current_step) if current_step % FLAGS.checkpoint_every == 0: checkpoint_prefix = os.path.join(checkpoint_dir, "model") path = saver.save(sess, checkpoint_prefix, global_step=current_step) logger.info("✔︎ Saved model checkpoint to {0}\n".format(path)) if current_step % num_batches_per_epoch == 0: current_epoch = current_step // num_batches_per_epoch logger.info("✔︎ Epoch {0} has finished!".format(current_epoch)) logger.info("✔︎ Done.")
def train_cnn(): """Training CNN model.""" # Load sentences, labels, and training parameters logger.info("✔︎ Loading data...") logger.info("✔︎ Training data processing...") train_data = dh.load_data_and_labels(FLAGS.training_data_file, FLAGS.embedding_dim) logger.info("✔︎ Validation data processing...") validation_data = dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.embedding_dim) logger.info("Recommended padding Sequence length is: {0}".format(FLAGS.pad_seq_len)) logger.info("✔︎ Training data padding...") x_train_front, x_train_behind, y_train = dh.pad_data(train_data, FLAGS.pad_seq_len) logger.info("✔︎ Validation data padding...") x_validation_front, x_validation_behind, y_validation = dh.pad_data(validation_data, FLAGS.pad_seq_len) # Build vocabulary VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim) pretrained_word2vec_matrix = dh.load_word2vec_matrix(VOCAB_SIZE, FLAGS.embedding_dim) # Build a graph and cnn object with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): cnn = TextCNN( sequence_length=FLAGS.pad_seq_len, num_classes=y_train.shape[1], vocab_size=VOCAB_SIZE, fc_hidden_size=FLAGS.fc_hidden_size, embedding_size=FLAGS.embedding_dim, embedding_type=FLAGS.embedding_type, filter_sizes=list(map(int, FLAGS.filter_sizes.split(','))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda, pretrained_embedding=pretrained_word2vec_matrix) # Define training procedure with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate, global_step=cnn.global_step, decay_steps=FLAGS.decay_steps, decay_rate=FLAGS.decay_rate, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) grads, vars = zip(*optimizer.compute_gradients(cnn.loss)) grads, _ = tf.clip_by_global_norm(grads, clip_norm=FLAGS.norm_ratio) train_op = optimizer.apply_gradients(zip(grads, vars), global_step=cnn.global_step, name="train_op") # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in zip(grads, vars): if g is not None: grad_hist_summary = tf.summary.histogram("{0}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar("{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries if FLAGS.train_or_restore == 'R': MODEL = input("☛ Please input the checkpoints model you want to restore, " "it should be like(1490175368): ") # The model you want to restore while not (MODEL.isdigit() and len(MODEL) == 10): MODEL = input("✘ The format of your input is illegal, please re-input: ") logger.info("✔︎ The format of your input is legal, now loading to next step...") out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", MODEL)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) else: timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) best_checkpoint_dir = os.path.abspath(os.path.join(out_dir, "bestcheckpoints")) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", cnn.loss) acc_summary = tf.summary.scalar("accuracy", cnn.accuracy) # Train summaries train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph) # Validation summaries validation_summary_op = tf.summary.merge([loss_summary, acc_summary]) validation_summary_dir = os.path.join(out_dir, "summaries", "validation") validation_summary_writer = tf.summary.FileWriter(validation_summary_dir, sess.graph) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir, num_to_keep=3, maximize=True) if FLAGS.train_or_restore == 'R': # Load cnn model logger.info("✔︎ Loading model...") checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) logger.info(checkpoint_file) # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) else: if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # Embedding visualization config config = projector.ProjectorConfig() embedding_conf = config.embeddings.add() embedding_conf.tensor_name = "embedding" embedding_conf.metadata_path = FLAGS.metadata_file projector.visualize_embeddings(train_summary_writer, config) projector.visualize_embeddings(validation_summary_writer, config) # Save the embedding visualization saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt")) current_step = sess.run(cnn.global_step) def train_step(x_batch_front, x_batch_behind, y_batch): """A single training step""" feed_dict = { cnn.input_x_front: x_batch_front, cnn.input_x_behind: x_batch_behind, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob, cnn.is_training: True } _, step, summaries, loss, accuracy = sess.run( [train_op, cnn.global_step, train_summary_op, cnn.loss, cnn.accuracy], feed_dict) logger.info("step {0}: loss {1:g}, acc {2:g}".format(step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) def validation_step(x_batch_front, x_batch_behind, y_batch, writer=None): """Evaluates model on a validation set""" feed_dict = { cnn.input_x_front: x_batch_front, cnn.input_x_behind: x_batch_behind, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0, cnn.is_training: False } step, summaries, loss, accuracy, recall, precision, f1, auc = sess.run( [cnn.global_step, validation_summary_op, cnn.loss, cnn.accuracy, cnn.recall, cnn.precision, cnn.F1, cnn.AUC], feed_dict) logger.info("step {0}: loss {1:g}, acc {2:g}, recall {3:g}, precision {4:g}, f1 {5:g}, AUC {6}" .format(step, loss, accuracy, recall, precision, f1, auc)) if writer: writer.add_summary(summaries, step) return accuracy # Generate batches batches = dh.batch_iter( list(zip(x_train_front, x_train_behind, y_train)), FLAGS.batch_size, FLAGS.num_epochs) num_batches_per_epoch = int((len(x_train_front) - 1) / FLAGS.batch_size) + 1 # Training loop. For each batch... for batch in batches: x_batch_front, x_batch_behind, y_batch = zip(*batch) train_step(x_batch_front, x_batch_behind, y_batch) current_step = tf.train.global_step(sess, cnn.global_step) if current_step % FLAGS.evaluate_every == 0: logger.info("\nEvaluation:") accuracy = validation_step(x_validation_front, x_validation_behind, y_validation, writer=validation_summary_writer) best_saver.handle(accuracy, sess, current_step) if current_step % FLAGS.checkpoint_every == 0: checkpoint_prefix = os.path.join(checkpoint_dir, "model") path = saver.save(sess, checkpoint_prefix, global_step=current_step) logger.info("✔︎ Saved model checkpoint to {0}\n".format(path)) if current_step % num_batches_per_epoch == 0: current_epoch = current_step // num_batches_per_epoch logger.info("✔︎ Epoch {0} has finished!".format(current_epoch)) logger.info("✔︎ Done.")
def train_mann(): """Training MANN model.""" # Load sentences, labels, and training parameters logger.info('✔︎ Loading data...') logger.info('✔︎ Training data processing...') train_data = dh.load_data_and_labels(FLAGS.training_data_file, FLAGS.num_classes, FLAGS.embedding_dim) logger.info('✔︎ Validation data processing...') validation_data = \ dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.num_classes, FLAGS.embedding_dim) logger.info('Recommended padding Sequence length is: {0}'.format( FLAGS.pad_seq_len)) logger.info('✔︎ Training data padding...') x_train, y_train = dh.pad_data(train_data, FLAGS.pad_seq_len) logger.info('✔︎ Validation data padding...') x_validation, y_validation = dh.pad_data(validation_data, FLAGS.pad_seq_len) # Build vocabulary VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim) pretrained_word2vec_matrix = dh.load_word2vec_matrix( VOCAB_SIZE, FLAGS.embedding_dim) # Build a graph and mann object with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): mann = TextMANN(sequence_length=FLAGS.pad_seq_len, num_classes=FLAGS.num_classes, batch_size=FLAGS.batch_size, vocab_size=VOCAB_SIZE, lstm_hidden_size=FLAGS.lstm_hidden_size, fc_hidden_size=FLAGS.fc_hidden_size, embedding_size=FLAGS.embedding_dim, embedding_type=FLAGS.embedding_type, l2_reg_lambda=FLAGS.l2_reg_lambda, pretrained_embedding=pretrained_word2vec_matrix) # Define training procedure with tf.control_dependencies( tf.get_collection(tf.GraphKeys.UPDATE_OPS)): learning_rate = tf.train.exponential_decay( learning_rate=FLAGS.learning_rate, global_step=mann.global_step, decay_steps=FLAGS.decay_steps, decay_rate=FLAGS.decay_rate, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) grads, vars = zip(*optimizer.compute_gradients(mann.loss)) grads, _ = tf.clip_by_global_norm(grads, clip_norm=FLAGS.norm_ratio) train_op = optimizer.apply_gradients( zip(grads, vars), global_step=mann.global_step, name="train_op") # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in zip(grads, vars): if g is not None: grad_hist_summary = tf.summary.histogram( "{0}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar( "{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries if FLAGS.train_or_restore == 'R': MODEL = input( "☛ Please input the checkpoints model you want to restore, " "it should be like(1490175368): " ) # The model you want to restore while not (MODEL.isdigit() and len(MODEL) == 10): MODEL = input( '✘ The format of your input is illegal, please re-input: ' ) logger.info( '✔︎ The format of your input is legal, now loading to next step...' ) checkpoint_dir = 'runs/' + MODEL + '/checkpoints/' out_dir = os.path.abspath( os.path.join(os.path.curdir, "runs", MODEL)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) else: timestamp = str(int(time.time())) out_dir = os.path.abspath( os.path.join(os.path.curdir, "runs", timestamp)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", mann.loss) # Train summaries train_summary_op = tf.summary.merge( [loss_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter( train_summary_dir, sess.graph) # Validation summaries validation_summary_op = tf.summary.merge([loss_summary]) validation_summary_dir = os.path.join(out_dir, "summaries", "validation") validation_summary_writer = tf.summary.FileWriter( validation_summary_dir, sess.graph) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) if FLAGS.train_or_restore == 'R': # Load mann model logger.info("✔ Loading model...") checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) logger.info(checkpoint_file) # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph( "{0}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) else: checkpoint_dir = os.path.abspath( os.path.join(out_dir, "checkpoints")) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # Embedding visualization config config = projector.ProjectorConfig() embedding_conf = config.embeddings.add() embedding_conf.tensor_name = 'embedding' embedding_conf.metadata_path = FLAGS.metadata_file projector.visualize_embeddings(train_summary_writer, config) projector.visualize_embeddings(validation_summary_writer, config) # Save the embedding visualization saver.save( sess, os.path.join(out_dir, 'embedding', 'embedding.ckpt')) current_step = sess.run(mann.global_step) def train_step(x_batch, y_batch): """A single training step""" feed_dict = { mann.input_x: x_batch, mann.input_y: y_batch, mann.dropout_keep_prob: FLAGS.dropout_keep_prob, mann.is_training: True } _, step, summaries, loss = sess.run( [train_op, mann.global_step, train_summary_op, mann.loss], feed_dict) logger.info("step {0}: loss {1:g}".format(step, loss)) train_summary_writer.add_summary(summaries, step) def validation_step(x_validation, y_validation, writer=None): """Evaluates model on a validation set""" batches_validation = dh.batch_iter( list(zip(x_validation, y_validation)), FLAGS.batch_size, FLAGS.num_epochs) # Predict classes by threshold or topk ('ts': threshold; 'tk': topk) eval_counter, eval_loss, eval_rec_ts, eval_acc_ts, eval_F_ts = 0, 0.0, 0.0, 0.0, 0.0 eval_rec_tk = [0.0] * FLAGS.top_num eval_acc_tk = [0.0] * FLAGS.top_num eval_F_tk = [0.0] * FLAGS.top_num for batch_validation in batches_validation: x_batch_validation, y_batch_validation = zip( *batch_validation) feed_dict = { mann.input_x: x_batch_validation, mann.input_y: y_batch_validation, mann.dropout_keep_prob: 1.0, mann.is_training: False } step, summaries, scores, cur_loss = sess.run([ mann.global_step, validation_summary_op, mann.scores, mann.loss ], feed_dict) # Predict by threshold predicted_labels_threshold, predicted_values_threshold = \ dh.get_label_using_scores_by_threshold(scores=scores, threshold=FLAGS.threshold) cur_rec_ts, cur_acc_ts, cur_F_ts = 0.0, 0.0, 0.0 for index, predicted_label_threshold in enumerate( predicted_labels_threshold): rec_inc_ts, acc_inc_ts, F_inc_ts = dh.cal_metric( predicted_label_threshold, y_batch_validation[index]) cur_rec_ts, cur_acc_ts, cur_F_ts = cur_rec_ts + rec_inc_ts, \ cur_acc_ts + acc_inc_ts, \ cur_F_ts + F_inc_ts cur_rec_ts = cur_rec_ts / len(y_batch_validation) cur_acc_ts = cur_acc_ts / len(y_batch_validation) cur_F_ts = cur_F_ts / len(y_batch_validation) eval_rec_ts, eval_acc_ts, eval_F_ts = eval_rec_ts + cur_rec_ts, \ eval_acc_ts + cur_acc_ts, \ eval_F_ts + cur_F_ts # Predict by topK topK_predicted_labels = [] for top_num in range(FLAGS.top_num): predicted_labels_topk, predicted_values_topk = \ dh.get_label_using_scores_by_topk(scores=scores, top_num=top_num+1) topK_predicted_labels.append(predicted_labels_topk) cur_rec_tk = [0.0] * FLAGS.top_num cur_acc_tk = [0.0] * FLAGS.top_num cur_F_tk = [0.0] * FLAGS.top_num for top_num, predicted_labels_topK in enumerate( topK_predicted_labels): for index, predicted_label_topK in enumerate( predicted_labels_topK): rec_inc_tk, acc_inc_tk, F_inc_tk = dh.cal_metric( predicted_label_topK, y_batch_validation[index]) cur_rec_tk[top_num], cur_acc_tk[top_num], cur_F_tk[top_num] = \ cur_rec_tk[top_num] + rec_inc_tk, \ cur_acc_tk[top_num] + acc_inc_tk, \ cur_F_tk[top_num] + F_inc_tk cur_rec_tk[top_num] = cur_rec_tk[top_num] / len( y_batch_validation) cur_acc_tk[top_num] = cur_acc_tk[top_num] / len( y_batch_validation) cur_F_tk[top_num] = cur_F_tk[top_num] / len( y_batch_validation) eval_rec_tk[top_num], eval_acc_tk[top_num], eval_F_tk[top_num] = \ eval_rec_tk[top_num] + cur_rec_tk[top_num], \ eval_acc_tk[top_num] + cur_acc_tk[top_num], \ eval_F_tk[top_num] + cur_F_tk[top_num] eval_loss = eval_loss + cur_loss eval_counter = eval_counter + 1 logger.info("✔︎ validation batch {0}: loss {1:g}".format( eval_counter, cur_loss)) logger.info( "︎☛ Predict by threshold: recall {0:g}, accuracy {1:g}, F {2:g}" .format(cur_rec_ts, cur_acc_ts, cur_F_ts)) logger.info("︎☛ Predict by topK:") for top_num in range(FLAGS.top_num): logger.info( "Top{0}: recall {1:g}, accuracy {2:g}, F {3:g}". format(top_num + 1, cur_rec_tk[top_num], cur_acc_tk[top_num], cur_F_tk[top_num])) if writer: writer.add_summary(summaries, step) eval_loss = float(eval_loss / eval_counter) eval_rec_ts = float(eval_rec_ts / eval_counter) eval_acc_ts = float(eval_acc_ts / eval_counter) eval_F_ts = float(eval_F_ts / eval_counter) for top_num in range(FLAGS.top_num): eval_rec_tk[top_num] = float(eval_rec_tk[top_num] / eval_counter) eval_acc_tk[top_num] = float(eval_acc_tk[top_num] / eval_counter) eval_F_tk[top_num] = float(eval_F_tk[top_num] / eval_counter) return eval_loss, eval_rec_ts, eval_acc_ts, eval_F_ts, eval_rec_tk, eval_acc_tk, eval_F_tk # Generate batches batches_train = dh.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) num_batches_per_epoch = int( (len(x_train) - 1) / FLAGS.batch_size) + 1 # Training loop. For each batch... for batch_train in batches_train: x_batch_train, y_batch_train = zip(*batch_train) train_step(x_batch_train, y_batch_train) current_step = tf.train.global_step(sess, mann.global_step) if current_step % FLAGS.evaluate_every == 0: logger.info("\nEvaluation:") eval_loss, eval_rec_ts, eval_acc_ts, eval_F_ts, eval_rec_tk, eval_acc_tk, eval_F_tk = \ validation_step(x_validation, y_validation, writer=validation_summary_writer) logger.info( "All Validation set: Loss {0:g}".format(eval_loss)) # Predict by threshold logger.info( "︎☛ Predict by threshold: Recall {0:g}, Accuracy {1:g}, F {2:g}" .format(eval_rec_ts, eval_acc_ts, eval_F_ts)) # Predict by topK logger.info("︎☛ Predict by topK:") for top_num in range(FLAGS.top_num): logger.info( "Top{0}: Recall {1:g}, Accuracy {2:g}, F {3:g}". format(top_num + 1, eval_rec_tk[top_num], eval_acc_tk[top_num], eval_F_tk[top_num])) if current_step % FLAGS.checkpoint_every == 0: checkpoint_prefix = os.path.join(checkpoint_dir, "model") path = saver.save(sess, checkpoint_prefix, global_step=current_step) logger.info( "✔︎ Saved model checkpoint to {0}\n".format(path)) if current_step % num_batches_per_epoch == 0: current_epoch = current_step // num_batches_per_epoch logger.info( "✔︎ Epoch {0} has finished!".format(current_epoch)) logger.info("✔︎ Done.")
def train_fasttext(): """Training FASTTEXT model.""" # Load sentences, labels, and training parameters logger.info('✔︎ Loading data...') logger.info('✔︎ Training data processing...') train_data = dh.load_data_and_labels(FLAGS.training_data_file, FLAGS.num_classes, FLAGS.embedding_dim) logger.info('✔︎ Validation data processing...') validation_data = \ dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.num_classes, FLAGS.embedding_dim) logger.info('Recommended padding Sequence length is: {0}'.format( FLAGS.pad_seq_len)) logger.info('✔︎ Training data padding...') x_train, y_train = dh.pad_data(train_data, FLAGS.pad_seq_len) logger.info('✔︎ Validation data padding...') x_validation, y_validation = dh.pad_data(validation_data, FLAGS.pad_seq_len) y_validation_bind = validation_data.labels_bind # Build vocabulary VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim) pretrained_word2vec_matrix = dh.load_word2vec_matrix( VOCAB_SIZE, FLAGS.embedding_dim) # Build a graph and fasttext object with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): fasttext = TextFAST( sequence_length=FLAGS.pad_seq_len, num_classes=FLAGS.num_classes, vocab_size=VOCAB_SIZE, fc_hidden_size=FLAGS.fc_hidden_size, embedding_size=FLAGS.embedding_dim, embedding_type=FLAGS.embedding_type, l2_reg_lambda=FLAGS.l2_reg_lambda, pretrained_embedding=pretrained_word2vec_matrix) # Define Training procedure # learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate, global_step=cnn.global_step, # decay_steps=FLAGS.decay_steps, decay_rate=FLAGS.decay_rate, # staircase=True) optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) grads_and_vars = optimizer.compute_gradients(fasttext.loss) train_op = optimizer.apply_gradients( grads_and_vars, global_step=fasttext.global_step, name="train_op") # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram( "{0}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar( "{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries if FLAGS.train_or_restore == 'R': MODEL = input( "☛ Please input the checkpoints model you want to restore, " "it should be like(1490175368): " ) # The model you want to restore while not (MODEL.isdigit() and len(MODEL) == 10): MODEL = input( '✘ The format of your input is illegal, please re-input: ' ) logger.info( '✔︎ The format of your input is legal, now loading to next step...' ) checkpoint_dir = 'runs/' + MODEL + '/checkpoints/' out_dir = os.path.abspath( os.path.join(os.path.curdir, "runs", MODEL)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) else: timestamp = str(int(time.time())) out_dir = os.path.abspath( os.path.join(os.path.curdir, "runs", timestamp)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", fasttext.loss) # acc_summary = tf.summary.scalar("accuracy", fasttext.accuracy) # Train Summaries train_summary_op = tf.summary.merge( [loss_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter( train_summary_dir, sess.graph) # Validation summaries validation_summary_op = tf.summary.merge([loss_summary]) validation_summary_dir = os.path.join(out_dir, "summaries", "validation") validation_summary_writer = tf.summary.FileWriter( validation_summary_dir, sess.graph) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) if FLAGS.train_or_restore == 'R': # Load fasttext model logger.info("✔ Loading model...") checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) logger.info(checkpoint_file) # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph( "{0}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) else: checkpoint_dir = os.path.abspath( os.path.join(out_dir, "checkpoints")) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) current_step = sess.run(fasttext.global_step) def train_step(x_batch, y_batch): """A single training step""" feed_dict = { fasttext.input_x: x_batch, fasttext.input_y: y_batch, fasttext.dropout_keep_prob: FLAGS.dropout_keep_prob, fasttext.is_training: True } _, step, summaries, loss = sess.run([ train_op, fasttext.global_step, train_summary_op, fasttext.loss ], feed_dict) time_str = datetime.datetime.now().isoformat() logger.info("{0}: step {1}, loss {2:g}".format( time_str, step, loss)) train_summary_writer.add_summary(summaries, step) def validation_step(x_validation, y_validation, y_validation_bind, writer=None): """Evaluates model on a validation set""" batches_validation = dh.batch_iter( list(zip(x_validation, y_validation, y_validation_bind)), FLAGS.batch_size, FLAGS.num_epochs) eval_loss, eval_rec, eval_acc, eval_counter = 0.0, 0.0, 0.0, 0 for batch_validation in batches_validation: x_batch_validation, y_batch_validation, y_batch_validation_bind = zip( *batch_validation) feed_dict = { fasttext.input_x: x_batch_validation, fasttext.input_y: y_batch_validation, fasttext.dropout_keep_prob: 1.0, fasttext.is_training: False } step, summaries, logits, cur_loss = sess.run([ fasttext.global_step, validation_summary_op, fasttext.logits, fasttext.loss ], feed_dict) if FLAGS.use_classbind_or_not == 'Y': predicted_labels = dh.get_label_using_logits_and_classbind( logits, y_batch_validation_bind, top_number=FLAGS.top_num) if FLAGS.use_classbind_or_not == 'N': predicted_labels = dh.get_label_using_logits( logits, top_number=FLAGS.top_num) cur_rec, cur_acc = 0.0, 0.0 for index, predicted_label in enumerate(predicted_labels): rec_inc, acc_inc = dh.cal_rec_and_acc( predicted_label, y_batch_validation[index]) cur_rec, cur_acc = cur_rec + rec_inc, cur_acc + acc_inc cur_rec = cur_rec / len(y_batch_validation) cur_acc = cur_acc / len(y_batch_validation) eval_loss, eval_rec, eval_acc, eval_counter = eval_loss + cur_loss, eval_rec + cur_rec, \ eval_acc + cur_acc, eval_counter + 1 logger.info("✔︎ validation batch {0} finished.".format( eval_counter)) if writer: writer.add_summary(summaries, step) eval_loss = float(eval_loss / eval_counter) eval_rec = float(eval_rec / eval_counter) eval_acc = float(eval_acc / eval_counter) return eval_loss, eval_rec, eval_acc # Generate batches batches_train = dh.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) # Training loop. For each batch... for batch_train in batches_train: x_batch_train, y_batch_train = zip(*batch_train) train_step(x_batch_train, y_batch_train) current_step = tf.train.global_step(sess, fasttext.global_step) if current_step % FLAGS.evaluate_every == 0: logger.info("\nEvaluation:") eval_loss, eval_rec, eval_acc = validation_step( x_validation, y_validation, y_validation_bind, writer=validation_summary_writer) time_str = datetime.datetime.now().isoformat() logger.info( "{0}: step {1}, loss {2:g}, rec {3:g}, acc {4:g}". format(time_str, current_step, eval_loss, eval_rec, eval_acc)) if current_step % FLAGS.checkpoint_every == 0: checkpoint_prefix = os.path.join(checkpoint_dir, "model") path = saver.save(sess, checkpoint_prefix, global_step=current_step) logger.info( "✔︎ Saved model checkpoint to {0}\n".format(path)) logger.info("✔︎ Done.")
def test_cnn(): """Test CNN model.""" # Load data logger.info("✔ Loading data...") logger.info('Recommended padding Sequence length is: {0}'.format( FLAGS.pad_seq_len)) logger.info('✔︎ Test data processing...') test_data = dh.load_data_and_labels(FLAGS.test_data_file, FLAGS.num_classes, FLAGS.embedding_dim) logger.info('✔︎ Test data padding...') x_test, y_test = dh.pad_data(test_data, FLAGS.pad_seq_len) y_test_bind = test_data.labels_bind # Build vocabulary VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim) pretrained_word2vec_matrix = dh.load_word2vec_matrix( VOCAB_SIZE, FLAGS.embedding_dim) # Load cnn model logger.info("✔ Loading model...") checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) logger.info(checkpoint_file) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph( "{0}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input_x = graph.get_operation_by_name("input_x").outputs[0] # input_y = graph.get_operation_by_name("input_y").outputs[0] dropout_keep_prob = graph.get_operation_by_name( "dropout_keep_prob").outputs[0] # pre-trained_word2vec pretrained_embedding = graph.get_operation_by_name( "embedding/embedding").outputs[0] # Tensors we want to evaluate logits = graph.get_operation_by_name("output/logits").outputs[0] # Generate batches for one epoch batches = dh.batch_iter(list(zip(x_test, y_test, y_test_bind)), FLAGS.batch_size, 1, shuffle=False) # Collect the predictions here all_predicitons = [] eval_loss, eval_rec, eval_acc, eval_counter = 0.0, 0.0, 0.0, 0 for batch_test in batches: x_batch_test, y_batch_test, y_batch_test_bind = zip( *batch_test) feed_dict = {input_x: x_batch_test, dropout_keep_prob: 1.0} batch_logits = sess.run(logits, feed_dict) if FLAGS.use_classbind_or_not == 'Y': predicted_labels = dh.get_label_using_logits_and_classbind( batch_logits, y_batch_test_bind, top_number=FLAGS.top_num) if FLAGS.use_classbind_or_not == 'N': predicted_labels = dh.get_label_using_logits( batch_logits, top_number=FLAGS.top_num) all_predicitons = np.append(all_predicitons, predicted_labels) cur_rec, cur_acc = 0.0, 0.0 for index, predicted_label in enumerate(predicted_labels): rec_inc, acc_inc = dh.cal_rec_and_acc( predicted_label, y_batch_test[index]) cur_rec, cur_acc = cur_rec + rec_inc, cur_acc + acc_inc cur_rec = cur_rec / len(y_batch_test) cur_acc = cur_acc / len(y_batch_test) eval_rec, eval_acc, eval_counter = eval_rec + cur_rec, eval_acc + cur_acc, eval_counter + 1 logger.info( "✔︎ validation batch {0} finished.".format(eval_counter)) eval_rec = float(eval_rec / eval_counter) eval_acc = float(eval_acc / eval_counter) logger.info("☛ Recall {0:g}, Accuracy {1:g}".format( eval_rec, eval_acc)) np.savetxt(SAVE_FILE, list(zip(all_predicitons)), fmt='%s') logger.info("✔ Done.")
def train_lmlp(): """Training LMLP model.""" # Load sentences, labels, and training parameters logger.info("✔︎ Loading data...") logger.info("✔︎ Training data processing...") train_data = dh.load_data_and_labels(FLAGS.training_data_file, FLAGS.num_classes_list, FLAGS.total_classes, FLAGS.embedding_dim, data_aug_flag=False) logger.info("✔︎ Validation data processing...") val_data = dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.num_classes_list, FLAGS.total_classes, FLAGS.embedding_dim, data_aug_flag=False) logger.info("Recommended padding Sequence length is: {0}".format(FLAGS.pad_seq_len)) logger.info("✔︎ Training data padding...") x_train, y_train, y_train_tuple = dh.pad_data(train_data, FLAGS.pad_seq_len) logger.info("✔︎ Validation data padding...") x_val, y_val, y_val_tuple = dh.pad_data(val_data, FLAGS.pad_seq_len) # Build vocabulary VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim) pretrained_word2vec_matrix = dh.load_word2vec_matrix(VOCAB_SIZE, FLAGS.embedding_dim) # Build a graph and lmlp object with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): lmlp = eval(FLAGS.lmlp_type)( sequence_length=FLAGS.pad_seq_len, num_classes_list=list(map(int, FLAGS.num_classes_list.split(','))), total_classes=FLAGS.total_classes, vocab_size=VOCAB_SIZE, fc_hidden_size=FLAGS.fc_hidden_size, embedding_size=FLAGS.embedding_dim, embedding_type=FLAGS.embedding_type, l2_reg_lambda=FLAGS.l2_reg_lambda, pretrained_embedding=pretrained_word2vec_matrix, alpha=FLAGS.alpha, beta=FLAGS.beta) # Define training procedure with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate, global_step=lmlp.global_step, decay_steps=FLAGS.decay_steps, decay_rate=FLAGS.decay_rate, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) grads, vars = zip(*optimizer.compute_gradients(lmlp.loss)) grads, _ = tf.clip_by_global_norm(grads, clip_norm=FLAGS.norm_ratio) train_op = optimizer.apply_gradients(zip(grads, vars), global_step=lmlp.global_step, name="train_op") # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in zip(grads, vars): if g is not None: grad_hist_summary = tf.summary.histogram("{0}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar("{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries if FLAGS.train_or_restore == 'R': MODEL = input("☛ Please input the checkpoints model you want to restore, " "it should be like(1490175368): ") # The model you want to restore while not (MODEL.isdigit() and len(MODEL) == 10): MODEL = input("✘ The format of your input is illegal, please re-input: ") logger.info("✔︎ The format of your input is legal, now loading to next step...") out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", MODEL)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) else: timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp)) logger.info("✔︎ Writing to {0}\n".format(out_dir)) checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) best_checkpoint_dir = os.path.abspath(os.path.join(out_dir, "bestcheckpoints")) # Summaries for loss loss_summary = tf.summary.scalar("loss", lmlp.loss) # Train summaries train_summary_op = tf.summary.merge([loss_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph) # Validation summaries validation_summary_op = tf.summary.merge([loss_summary]) validation_summary_dir = os.path.join(out_dir, "summaries", "validation") validation_summary_writer = tf.summary.FileWriter(validation_summary_dir, sess.graph) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir, num_to_keep=3, maximize=True) if FLAGS.train_or_restore == 'R': # Load lmlp model logger.info("✔︎ Loading model...") checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) logger.info(checkpoint_file) # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) else: if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # Save the embedding visualization saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt")) current_step = sess.run(lmlp.global_step) def train_step(x_batch, y_batch, y_batch_tuple): """A single training step""" y_batch_first = [i[0] for i in y_batch_tuple] y_batch_second = [j[1] for j in y_batch_tuple] y_batch_third = [k[2] for k in y_batch_tuple] feed_dict = { lmlp.input_x: x_batch, lmlp.input_y_first: y_batch_first, lmlp.input_y_second: y_batch_second, lmlp.input_y_third: y_batch_third, lmlp.input_y: y_batch, lmlp.dropout_keep_prob: FLAGS.dropout_keep_prob, lmlp.is_training: True } _, step, summaries, loss = sess.run( [train_op, lmlp.global_step, train_summary_op, lmlp.loss], feed_dict) logger.info("step {0}: loss {1:g}".format(step, loss)) train_summary_writer.add_summary(summaries, step) def validation_step(x_val, y_val, y_val_tuple, writer=None): """Evaluates model on a validation set""" batches_validation = dh.batch_iter( list(zip(x_val, y_val, y_val_tuple)), FLAGS.batch_size, 1) # Predict classes by threshold or topk ('ts': threshold; 'tk': topk) eval_counter, eval_loss, eval_auc = 0, 0.0, 0.0 eval_rec_ts, eval_pre_ts, eval_F_ts = 0.0, 0.0, 0.0 eval_rec_tk = [0.0] * FLAGS.top_num eval_pre_tk = [0.0] * FLAGS.top_num eval_F_tk = [0.0] * FLAGS.top_num val_scores = [] for batch_validation in batches_validation: x_batch_val, y_batch_val, y_batch_val_tuple = zip(*batch_validation) y_batch_val_first = [i[0] for i in y_batch_val_tuple] y_batch_val_second = [j[1] for j in y_batch_val_tuple] y_batch_val_third = [k[2] for k in y_batch_val_tuple] feed_dict = { lmlp.input_x: x_batch_val, lmlp.input_y_first: y_batch_val_first, lmlp.input_y_second: y_batch_val_second, lmlp.input_y_third: y_batch_val_third, lmlp.input_y: y_batch_val, lmlp.dropout_keep_prob: 1.0, lmlp.is_training: False } step, summaries, scores, cur_loss = sess.run( [lmlp.global_step, validation_summary_op, lmlp.scores, lmlp.loss], feed_dict) for predicted_scores in scores: val_scores.append(predicted_scores) # Predict by threshold predicted_labels_threshold, predicted_values_threshold = \ dh.get_label_using_scores_by_threshold(scores=scores, threshold=FLAGS.threshold) cur_rec_ts, cur_pre_ts, cur_F_ts = 0.0, 0.0, 0.0 for index, predicted_label_threshold in enumerate(predicted_labels_threshold): rec_inc_ts, pre_inc_ts = dh.cal_metric(predicted_label_threshold, y_batch_val[index]) cur_rec_ts, cur_pre_ts = cur_rec_ts + rec_inc_ts, cur_pre_ts + pre_inc_ts cur_rec_ts = cur_rec_ts / len(y_batch_val) cur_pre_ts = cur_pre_ts / len(y_batch_val) cur_F_ts = dh.cal_F(cur_rec_ts, cur_pre_ts) eval_rec_ts, eval_pre_ts = eval_rec_ts + cur_rec_ts, eval_pre_ts + cur_pre_ts # Predict by topK topK_predicted_labels = [] for top_num in range(FLAGS.top_num): predicted_labels_topk, predicted_values_topk = \ dh.get_label_using_scores_by_topk(scores=scores, top_num=top_num+1) topK_predicted_labels.append(predicted_labels_topk) cur_rec_tk = [0.0] * FLAGS.top_num cur_pre_tk = [0.0] * FLAGS.top_num cur_F_tk = [0.0] * FLAGS.top_num for top_num, predicted_labels_topK in enumerate(topK_predicted_labels): for index, predicted_label_topK in enumerate(predicted_labels_topK): rec_inc_tk, pre_inc_tk = dh.cal_metric(predicted_label_topK, y_batch_val[index]) cur_rec_tk[top_num], cur_pre_tk[top_num] = \ cur_rec_tk[top_num] + rec_inc_tk, cur_pre_tk[top_num] + pre_inc_tk cur_rec_tk[top_num] = cur_rec_tk[top_num] / len(y_batch_val) cur_pre_tk[top_num] = cur_pre_tk[top_num] / len(y_batch_val) cur_F_tk[top_num] = dh.cal_F(cur_rec_tk[top_num], cur_pre_tk[top_num]) eval_rec_tk[top_num], eval_pre_tk[top_num] = \ eval_rec_tk[top_num] + cur_rec_tk[top_num], eval_pre_tk[top_num] + cur_pre_tk[top_num] eval_loss = eval_loss + cur_loss eval_counter = eval_counter + 1 if writer: writer.add_summary(summaries, step) # Calculate the average AUC val_scores = np.array(val_scores) y_val = np.array(y_val) missing_labels_num = 0 for index in range(FLAGS.total_classes): y_true = y_val[:, index] y_score = val_scores[:, index] try: eval_auc = eval_auc + roc_auc_score(y_true=y_true, y_score=y_score) except: missing_labels_num += 1 eval_auc = eval_auc / (FLAGS.total_classes - missing_labels_num) eval_loss = float(eval_loss / eval_counter) eval_rec_ts = float(eval_rec_ts / eval_counter) eval_pre_ts = float(eval_pre_ts / eval_counter) eval_F_ts = dh.cal_F(eval_rec_ts, eval_pre_ts) for top_num in range(FLAGS.top_num): eval_rec_tk[top_num] = float(eval_rec_tk[top_num] / eval_counter) eval_pre_tk[top_num] = float(eval_pre_tk[top_num] / eval_counter) eval_F_tk[top_num] = dh.cal_F(eval_rec_tk[top_num], eval_pre_tk[top_num]) return eval_loss, eval_auc, eval_rec_ts, eval_pre_ts, eval_F_ts, eval_rec_tk, eval_pre_tk, eval_F_tk # Generate batches batches_train = dh.batch_iter( list(zip(x_train, y_train, y_train_tuple)), FLAGS.batch_size, FLAGS.num_epochs) num_batches_per_epoch = int((len(x_train) - 1) / FLAGS.batch_size) + 1 # Training loop. For each batch... for batch_train in batches_train: x_batch_train, y_batch_train, y_batch_train_tuple = zip(*batch_train) train_step(x_batch_train, y_batch_train, y_batch_train_tuple) current_step = tf.train.global_step(sess, lmlp.global_step) if current_step % FLAGS.evaluate_every == 0: logger.info("\nEvaluation:") eval_loss, eval_auc, eval_rec_ts, eval_pre_ts, eval_F_ts, eval_rec_tk, eval_pre_tk, eval_F_tk = \ validation_step(x_val, y_val, y_val_tuple, writer=validation_summary_writer) logger.info("All Validation set: Loss {0:g} | AUC {1:g}".format(eval_loss, eval_auc)) # Predict by threshold logger.info("☛ Predict by threshold: Recall {0:g}, Precision {1:g}, F {2:g}" .format(eval_rec_ts, eval_pre_ts, eval_F_ts)) # Predict by topK logger.info("☛ Predict by topK:") for top_num in range(FLAGS.top_num): logger.info("Top{0}: Recall {1:g}, Precision {2:g}, F {3:g}" .format(top_num+1, eval_rec_tk[top_num], eval_pre_tk[top_num], eval_F_tk[top_num])) best_saver.handle(eval_auc, sess, current_step) if current_step % FLAGS.checkpoint_every == 0: checkpoint_prefix = os.path.join(checkpoint_dir, "model") path = saver.save(sess, checkpoint_prefix, global_step=current_step) logger.info("✔︎ Saved model checkpoint to {0}\n".format(path)) if current_step % num_batches_per_epoch == 0: current_epoch = current_step // num_batches_per_epoch logger.info("✔︎ Epoch {0} has finished!".format(current_epoch)) logger.info("✔︎ Done.")
def test_cnn(): """Test CNN model.""" # Load data logger.info("✔ Loading data...") logger.info('Recommended padding Sequence length is: {0}'.format( FLAGS.pad_seq_len)) logger.info('✔︎ Test data processing...') test_data = dh.load_data_and_labels(FLAGS.test_data_file, FLAGS.embedding_dim) logger.info('✔︎ Test data padding...') x_test_front, x_test_behind, y_test = dh.pad_data(test_data, FLAGS.pad_seq_len) # Build vocabulary VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim) pretrained_word2vec_matrix = dh.load_word2vec_matrix( VOCAB_SIZE, FLAGS.embedding_dim) # Load cnn model logger.info("✔ Loading model...") checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) logger.info(checkpoint_file) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph( "{0}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input_x_front = graph.get_operation_by_name( "input_x_front").outputs[0] input_x_behind = graph.get_operation_by_name( "input_x_behind").outputs[0] input_y = graph.get_operation_by_name("input_y").outputs[0] dropout_keep_prob = graph.get_operation_by_name( "dropout_keep_prob").outputs[0] is_training = graph.get_operation_by_name("is_training").outputs[0] # pre-trained word2vec pretrained_embedding = graph.get_operation_by_name( "embedding/embedding").outputs[0] # Tensors we want to evaluate scores = graph.get_operation_by_name("output/scores").outputs predictions = graph.get_operation_by_name( "output/predictions").outputs[0] softmax_scores = graph.get_operation_by_name( "output/SoftMax_scores").outputs[0] topKPreds = graph.get_operation_by_name( "output/topKPreds").outputs[0] accuracy = graph.get_operation_by_name( "accuracy/accuracy").outputs[0] loss = graph.get_operation_by_name("loss/loss").outputs[0] # Split the output nodes name by '|' if you have several output nodes output_node_names = 'output/scores|output/predictions|output/SoftMax_scores|output/topKPreds' # Save the .pb model file output_graph_def = tf.graph_util.convert_variables_to_constants( sess, sess.graph_def, output_node_names.split("|")) tf.train.write_graph(output_graph_def, 'graph', 'graph-cnn-{0}.pb'.format(MODEL_LOG), as_text=False) # Generate batches for one epoch batches = dh.batch_iter(list( zip(x_test_front, x_test_behind, y_test)), FLAGS.batch_size, 1, shuffle=False) # Collect the predictions here all_scores = [] all_softmax_scores = [] all_predictions = [] all_topKPreds = [] for index, x_test_batch in enumerate(batches): x_batch_front, x_batch_behind, y_batch = zip(*x_test_batch) feed_dict = { input_x_front: x_batch_front, input_x_behind: x_batch_behind, input_y: y_batch, dropout_keep_prob: 1.0, is_training: False } batch_scores = sess.run(scores, feed_dict) all_scores = np.append(all_scores, batch_scores) batch_softmax_scores = sess.run(softmax_scores, feed_dict) all_softmax_scores = np.append(all_softmax_scores, batch_softmax_scores) batch_predictions = sess.run(predictions, feed_dict) all_predictions = np.concatenate( [all_predictions, batch_predictions]) batch_topKPreds = sess.run(topKPreds, feed_dict) all_topKPreds = np.append(all_topKPreds, batch_topKPreds) batch_loss = sess.run(loss, feed_dict) batch_acc = sess.run(accuracy, feed_dict) logger.info( "✔︎ Test batch {0}: loss {1:g}, accuracy {2:g}.".format( (index + 1), batch_loss, batch_acc)) os.makedirs(SAVE_DIR) np.savetxt(SAVE_DIR + '/result_sub_' + SUBSET + '.txt', list(zip(all_predictions, all_topKPreds)), fmt='%s') logger.info("✔ Done.")