def test_preprocess_applied(self, mock_load_data):
    if tf.config.list_logical_devices('GPU'):
      self.skipTest('skip GPU test')
    # Mock out the actual data loading from disk. Assert that the preprocessing
    # function is applied to the client data, and that only the ClientData
    # objects we desired are used.
    #
    # The correctness of the preprocessing function is tested in other tests.
    mock_train = mock.create_autospec(tff.simulation.datasets.ClientData)
    mock_test = mock.create_autospec(tff.simulation.datasets.ClientData)
    mock_load_data.return_value = (mock_train, mock_test)

    _, _ = emnist_dataset.get_federated_datasets()

    mock_load_data.assert_called_once()

    # Assert the training and testing data are preprocessed.
    self.assertEqual(mock_train.mock_calls,
                     mock.call.preprocess(mock.ANY).call_list())
    self.assertEqual(mock_test.mock_calls,
                     mock.call.preprocess(mock.ANY).call_list())
Example #2
0
def run_experiment():
    """Data preprocessing and experiment execution."""
    emnist_train, _ = emnist_dataset.get_federated_datasets(
        train_client_batch_size=FLAGS.client_batch_size,
        train_client_epochs_per_round=FLAGS.client_epochs_per_round,
        only_digits=False)

    _, emnist_test = emnist_dataset.get_centralized_datasets()

    example_dataset = emnist_train.create_tf_dataset_for_client(
        emnist_train.client_ids[0])
    input_spec = example_dataset.element_spec

    client_datasets_fn = training_utils.build_client_datasets_fn(
        emnist_train, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)
    validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

    client_optimizer_fn = functools.partial(
        utils_impl.create_optimizer_from_flags, 'client')
    server_optimizer_fn = functools.partial(
        utils_impl.create_optimizer_from_flags, 'server')

    def tff_model_fn():
        keras_model = model_builder()
        return tff.learning.from_keras_model(keras_model,
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    if FLAGS.use_compression:
        # We create a `MeasuredProcess` for broadcast process and a
        # `MeasuredProcess` for aggregate process by providing the
        # `_broadcast_encoder_fn` and `_mean_encoder_fn` to corresponding utilities.
        # The fns are called once for each of the model weights created by
        # tff_model_fn, and return instances of appropriate encoders.
        encoded_broadcast_process = (
            tff.learning.framework.build_encoded_broadcast_process_from_model(
                tff_model_fn, _broadcast_encoder_fn))
        encoded_mean_process = (
            tff.learning.framework.build_encoded_mean_process_from_model(
                tff_model_fn, _mean_encoder_fn))
    else:
        encoded_broadcast_process = None
        encoded_mean_process = None

    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=tff_model_fn,
        client_optimizer_fn=client_optimizer_fn,
        server_optimizer_fn=server_optimizer_fn,
        aggregation_process=encoded_mean_process,
        broadcast_process=encoded_broadcast_process)

    # Log hyperparameters to CSV
    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    results_dir = os.path.join(FLAGS.root_output_dir, 'results',
                               FLAGS.experiment_name)
    utils_impl.create_directory_if_not_exists(results_dir)
    hparam_file = os.path.join(results_dir, 'hparams.csv')
    utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=validation_fn,
                      total_rounds=FLAGS.total_rounds,
                      experiment_name=FLAGS.experiment_name,
                      root_output_dir=FLAGS.root_output_dir,
                      rounds_per_eval=FLAGS.rounds_per_eval,
                      rounds_per_checkpoint=FLAGS.rounds_per_checkpoint,
                      rounds_per_profile=FLAGS.rounds_per_profile)
Example #3
0
def run_federated(
    iterative_process_builder: Callable[..., tff.templates.IterativeProcess],
    client_epochs_per_round: int,
    client_batch_size: int,
    clients_per_round: int,
    client_datasets_random_seed: Optional[int] = None,
    model: Optional[str] = 'cnn',
    total_rounds: Optional[int] = 1500,
    experiment_name: Optional[str] = 'federated_emnist_cr',
    root_output_dir: Optional[str] = '/tmp/fed_opt',
    **kwargs):
  """Runs an iterative process on the EMNIST character recognition task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    model: A string specifying the model used for character recognition.
      Can be one of `cnn` and `2nn`, corresponding to a CNN model and a densely
      connected 2-layer model (respectively).
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

  emnist_train, _ = emnist_dataset.get_federated_datasets(
      train_client_batch_size=client_batch_size,
      train_client_epochs_per_round=client_epochs_per_round,
      only_digits=False)

  _, emnist_test = emnist_dataset.get_centralized_datasets(only_digits=False)

  input_spec = emnist_train.create_tf_dataset_for_client(
      emnist_train.client_ids[0]).element_spec

  if model == 'cnn':
    model_builder = functools.partial(
        emnist_models.create_conv_dropout_model, only_digits=False)
  elif model == '2nn':
    model_builder = functools.partial(
        emnist_models.create_two_hidden_layer_model, only_digits=False)
  else:
    raise ValueError(
        'Cannot handle model flag [{!s}], must be one of {!s}.'.format(
            model, EMNIST_MODELS))

  loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
  metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

  def tff_model_fn() -> tff.learning.Model:
    return tff.learning.from_keras_model(
        keras_model=model_builder(),
        input_spec=input_spec,
        loss=loss_builder(),
        metrics=metrics_builder())

  training_process = iterative_process_builder(tff_model_fn)

  client_datasets_fn = training_utils.build_client_datasets_fn(
      dataset=emnist_train,
      clients_per_round=clients_per_round,
      random_seed=client_datasets_random_seed)

  test_fn = training_utils.build_centralized_evaluate_fn(
      eval_dataset=emnist_test,
      model_builder=model_builder,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  validation_fn = lambda model_weights, round_num: test_fn(model_weights)

  logging.info('Training model:')
  logging.info(model_builder().summary())

  training_loop.run(
      iterative_process=training_process,
      client_datasets_fn=client_datasets_fn,
      validation_fn=validation_fn,
      test_fn=test_fn,
      total_rounds=total_rounds,
      experiment_name=experiment_name,
      root_output_dir=root_output_dir,
      **kwargs)
Example #4
0
def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Expected no command-line arguments, '
                         'got: {}'.format(argv))

  emnist_train, _ = emnist_dataset.get_federated_datasets(
      train_client_batch_size=FLAGS.client_batch_size,
      train_client_epochs_per_round=FLAGS.client_epochs_per_round,
      only_digits=False)

  _, emnist_test = emnist_dataset.get_centralized_datasets()

  if FLAGS.model == 'cnn':
    model_builder = functools.partial(
        emnist_models.create_conv_dropout_model, only_digits=False)
  elif FLAGS.model == '2nn':
    model_builder = functools.partial(
        emnist_models.create_two_hidden_layer_model, only_digits=False)
  else:
    raise ValueError('Cannot handle model flag [{!s}].'.format(FLAGS.model))

  loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
  metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

  if FLAGS.uniform_weighting:
    client_weighting = tff.learning.ClientWeighting.UNIFORM
  else:
    client_weighting = tff.learning.ClientWeighting.NUM_EXAMPLES

  def model_fn():
    return tff.learning.from_keras_model(
        model_builder(),
        loss_builder(),
        input_spec=emnist_test.element_spec,
        metrics=metrics_builder())

  if FLAGS.noise_multiplier is not None:
    if not FLAGS.uniform_weighting:
      raise ValueError(
          'Differential privacy is only implemented for uniform weighting.')
    if FLAGS.noise_multiplier <= 0:
      raise ValueError('noise_multiplier must be positive if DP is enabled.')
    if FLAGS.clip is None or FLAGS.clip <= 0:
      raise ValueError('clip must be positive if DP is enabled.')

    if not FLAGS.adaptive_clip_learning_rate:
      aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_fixed(
          noise_multiplier=FLAGS.noise_multiplier,
          clients_per_round=FLAGS.clients_per_round,
          clip=FLAGS.clip)
    else:
      if FLAGS.adaptive_clip_learning_rate <= 0:
        raise ValueError('adaptive_clip_learning_rate must be positive if '
                         'adaptive clipping is enabled.')
      aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_adaptive(
          noise_multiplier=FLAGS.noise_multiplier,
          clients_per_round=FLAGS.clients_per_round,
          initial_l2_norm_clip=FLAGS.clip,
          target_unclipped_quantile=FLAGS.target_unclipped_quantile,
          learning_rate=FLAGS.adaptive_clip_learning_rate)
  else:
    if FLAGS.uniform_weighting:
      aggregation_factory = tff.aggregators.UnweightedMeanFactory()
    else:
      aggregation_factory = tff.aggregators.MeanFactory()

  server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('server')
  client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('client')
  iterative_process = tff.learning.build_federated_averaging_process(
      model_fn=model_fn,
      server_optimizer_fn=server_optimizer_fn,
      client_weighting=client_weighting,
      client_optimizer_fn=client_optimizer_fn,
      model_update_aggregation_factory=aggregation_factory)

  client_datasets_fn = training_utils.build_client_datasets_fn(
      emnist_train, FLAGS.clients_per_round)

  evaluate_fn = training_utils.build_centralized_evaluate_fn(
      eval_dataset=emnist_test,
      model_builder=model_builder,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)
  validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

  logging.info('Training model:')
  logging.info(model_builder().summary())

  # Log hyperparameters to CSV
  hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
  results_dir = os.path.join(FLAGS.root_output_dir, 'results',
                             FLAGS.experiment_name)
  utils_impl.create_directory_if_not_exists(results_dir)
  hparam_file = os.path.join(results_dir, 'hparams.csv')
  utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file)

  training_loop.run(
      iterative_process=iterative_process,
      client_datasets_fn=client_datasets_fn,
      validation_fn=validation_fn,
      total_rounds=FLAGS.total_rounds,
      experiment_name=FLAGS.experiment_name,
      root_output_dir=FLAGS.root_output_dir,
      rounds_per_eval=FLAGS.rounds_per_eval,
      rounds_per_checkpoint=FLAGS.rounds_per_checkpoint,
      rounds_per_profile=FLAGS.rounds_per_profile)
Example #5
0
def main(argv):
    if len(argv) > 1:
        raise app.UsageError('Expected no command-line arguments, '
                             'got: {}'.format(argv))

    emnist_train, _ = emnist_dataset.get_federated_datasets(
        train_client_batch_size=FLAGS.client_batch_size,
        train_client_epochs_per_round=FLAGS.client_epochs_per_round,
        only_digits=False)

    _, emnist_test = emnist_dataset.get_centralized_datasets()

    if FLAGS.model == 'cnn':
        model_builder = functools.partial(
            emnist_models.create_conv_dropout_model, only_digits=False)
    elif FLAGS.model == '2nn':
        model_builder = functools.partial(
            emnist_models.create_two_hidden_layer_model, only_digits=False)
    else:
        raise ValueError('Cannot handle model flag [{!s}].'.format(
            FLAGS.model))

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    if FLAGS.uniform_weighting:

        def client_weight_fn(local_outputs):
            del local_outputs
            return 1.0

    else:
        client_weight_fn = None  #  Defaults to the number of examples per client.

    def model_fn():
        return tff.learning.from_keras_model(
            model_builder(),
            loss_builder(),
            input_spec=emnist_test.element_spec,
            metrics=metrics_builder())

    if FLAGS.noise_multiplier is not None:
        if not FLAGS.uniform_weighting:
            raise ValueError(
                'Differential privacy is only implemented for uniform weighting.'
            )

        dp_query = tff.utils.build_dp_query(
            clip=FLAGS.clip,
            noise_multiplier=FLAGS.noise_multiplier,
            expected_total_weight=FLAGS.clients_per_round,
            adaptive_clip_learning_rate=FLAGS.adaptive_clip_learning_rate,
            target_unclipped_quantile=FLAGS.target_unclipped_quantile,
            clipped_count_budget_allocation=FLAGS.
            clipped_count_budget_allocation,
            expected_clients_per_round=FLAGS.clients_per_round)

        weights_type = tff.learning.framework.weights_type_from_model(model_fn)
        aggregation_process = tff.utils.build_dp_aggregate_process(
            weights_type.trainable, dp_query)
    else:
        aggregation_process = None

    server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'server')
    client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'client')
    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=model_fn,
        server_optimizer_fn=server_optimizer_fn,
        client_weighting=client_weight_fn,
        client_optimizer_fn=client_optimizer_fn,
        aggregation_process=aggregation_process)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        emnist_train, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)
    validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    training_loop_dict = utils_impl.lookup_flag_values(training_loop_flags)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=validation_fn,
                      hparam_dict=hparam_dict,
                      **training_loop_dict)
Example #6
0
def run_experiment():
  """Data preprocessing and experiment execution."""
  emnist_train, _ = emnist_dataset.get_federated_datasets(
      train_client_batch_size=FLAGS.client_batch_size,
      train_client_epochs_per_round=FLAGS.client_epochs_per_round,
      only_digits=FLAGS.only_digits)
  _, emnist_test = emnist_dataset.get_centralized_datasets(
      only_digits=FLAGS.only_digits)

  example_dataset = emnist_train.create_tf_dataset_for_client(
      emnist_train.client_ids[0])
  input_spec = example_dataset.element_spec

  # Build optimizer functions from flags
  client_optimizer_fn = functools.partial(
      utils_impl.create_optimizer_from_flags, 'client')
  server_optimizer_fn = functools.partial(
      utils_impl.create_optimizer_from_flags, 'server')

  def tff_model_fn():
    return tff.learning.from_keras_model(
        keras_model=model_builder(),
        input_spec=input_spec,
        loss=tf.keras.losses.SparseCategoricalCrossentropy(),
        metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])

  if FLAGS.use_compression:
    # We create a `tff.templates.MeasuredProcess` for broadcast process and a
    # `tff.aggregators.WeightedAggregationFactory` for aggregation by providing
    # the `_broadcast_encoder_fn` and `_mean_encoder_fn` to corresponding
    # utilities. The fns are called once for each of the model weights created
    # by tff_model_fn, and return instances of appropriate encoders.
    encoded_broadcast_process = (
        tff.learning.framework.build_encoded_broadcast_process_from_model(
            tff_model_fn, _broadcast_encoder_fn))
    aggregator = tff.aggregators.MeanFactory(
        tff.aggregators.EncodedSumFactory(_mean_encoder_fn))
  else:
    encoded_broadcast_process = None
    aggregator = None

  # Construct the iterative process
  iterative_process = tff.learning.build_federated_averaging_process(
      model_fn=tff_model_fn,
      client_optimizer_fn=client_optimizer_fn,
      server_optimizer_fn=server_optimizer_fn,
      broadcast_process=encoded_broadcast_process,
      model_update_aggregation_factory=aggregator)

  iterative_process = (
      tff.simulation.compose_dataset_computation_with_iterative_process(
          emnist_train.dataset_computation, iterative_process))

  # Create a client sampling function, mapping integer round numbers to lists
  # of client ids.
  client_selection_fn = functools.partial(
      tff.simulation.build_uniform_sampling_fn(emnist_train.client_ids),
      size=FLAGS.clients_per_round)

  # Create a validation function
  evaluate_fn = tff.learning.build_federated_evaluation(tff_model_fn)

  def validation_fn(state, round_num):
    if round_num % FLAGS.rounds_per_eval == 0:
      return evaluate_fn(state.model, [emnist_test])
    else:
      return {}

  # Log hyperparameters to CSV
  hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
  results_dir = os.path.join(FLAGS.root_output_dir, 'results',
                             FLAGS.experiment_name)
  utils_impl.create_directory_if_not_exists(results_dir)
  hparam_file = os.path.join(results_dir, 'hparams.csv')
  utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file)

  checkpoint_manager, metrics_managers = _configure_managers()

  tff.simulation.run_simulation(
      process=iterative_process,
      client_selection_fn=client_selection_fn,
      validation_fn=validation_fn,
      total_rounds=FLAGS.total_rounds,
      file_checkpoint_manager=checkpoint_manager,
      metrics_managers=metrics_managers)
Example #7
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        client_datasets_random_seed: Optional[int] = None,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_emnist_ae',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on the EMNIST autoencoder task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  The iterative process must also have a callable attribute `get_model_weights`
  that takes as input the state of the iterative process, and returns a
  `tff.learning.ModelWeights` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    emnist_train, _ = emnist_dataset.get_federated_datasets(
        train_client_batch_size=client_batch_size,
        train_client_epochs_per_round=client_epochs_per_round,
        only_digits=False,
        emnist_task='autoencoder')

    _, emnist_test = emnist_dataset.get_centralized_datasets(
        train_batch_size=client_batch_size,
        only_digits=False,
        emnist_task='autoencoder')
    if max_eval_batches and max_eval_batches >= 1:
        emnist_test = emnist_test.take(max_eval_batches)

    input_spec = emnist_train.create_tf_dataset_for_client(
        emnist_train.client_ids[0]).element_spec

    model_builder = emnist_ae_models.create_autoencoder_model

    loss_builder = functools.partial(tf.keras.losses.MeanSquaredError,
                                     reduction=tf.keras.losses.Reduction.SUM)
    metrics_builder = lambda: [tf.keras.metrics.MeanSquaredError()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        dataset=emnist_train,
        clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_centralized_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=evaluate_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)