def test_preprocess_applied(self, mock_load_data): if tf.config.list_logical_devices('GPU'): self.skipTest('skip GPU test') # Mock out the actual data loading from disk. Assert that the preprocessing # function is applied to the client data, and that only the ClientData # objects we desired are used. # # The correctness of the preprocessing function is tested in other tests. mock_train = mock.create_autospec(tff.simulation.datasets.ClientData) mock_test = mock.create_autospec(tff.simulation.datasets.ClientData) mock_load_data.return_value = (mock_train, mock_test) _, _ = emnist_dataset.get_federated_datasets() mock_load_data.assert_called_once() # Assert the training and testing data are preprocessed. self.assertEqual(mock_train.mock_calls, mock.call.preprocess(mock.ANY).call_list()) self.assertEqual(mock_test.mock_calls, mock.call.preprocess(mock.ANY).call_list())
def run_experiment(): """Data preprocessing and experiment execution.""" emnist_train, _ = emnist_dataset.get_federated_datasets( train_client_batch_size=FLAGS.client_batch_size, train_client_epochs_per_round=FLAGS.client_epochs_per_round, only_digits=False) _, emnist_test = emnist_dataset.get_centralized_datasets() example_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[0]) input_spec = example_dataset.element_spec client_datasets_fn = training_utils.build_client_datasets_fn( emnist_train, FLAGS.clients_per_round) evaluate_fn = training_utils.build_centralized_evaluate_fn( eval_dataset=emnist_test, model_builder=model_builder, loss_builder=loss_builder, metrics_builder=metrics_builder) validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights) client_optimizer_fn = functools.partial( utils_impl.create_optimizer_from_flags, 'client') server_optimizer_fn = functools.partial( utils_impl.create_optimizer_from_flags, 'server') def tff_model_fn(): keras_model = model_builder() return tff.learning.from_keras_model(keras_model, input_spec=input_spec, loss=loss_builder(), metrics=metrics_builder()) if FLAGS.use_compression: # We create a `MeasuredProcess` for broadcast process and a # `MeasuredProcess` for aggregate process by providing the # `_broadcast_encoder_fn` and `_mean_encoder_fn` to corresponding utilities. # The fns are called once for each of the model weights created by # tff_model_fn, and return instances of appropriate encoders. encoded_broadcast_process = ( tff.learning.framework.build_encoded_broadcast_process_from_model( tff_model_fn, _broadcast_encoder_fn)) encoded_mean_process = ( tff.learning.framework.build_encoded_mean_process_from_model( tff_model_fn, _mean_encoder_fn)) else: encoded_broadcast_process = None encoded_mean_process = None iterative_process = tff.learning.build_federated_averaging_process( model_fn=tff_model_fn, client_optimizer_fn=client_optimizer_fn, server_optimizer_fn=server_optimizer_fn, aggregation_process=encoded_mean_process, broadcast_process=encoded_broadcast_process) # Log hyperparameters to CSV hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags()) results_dir = os.path.join(FLAGS.root_output_dir, 'results', FLAGS.experiment_name) utils_impl.create_directory_if_not_exists(results_dir) hparam_file = os.path.join(results_dir, 'hparams.csv') utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file) training_loop.run(iterative_process=iterative_process, client_datasets_fn=client_datasets_fn, validation_fn=validation_fn, total_rounds=FLAGS.total_rounds, experiment_name=FLAGS.experiment_name, root_output_dir=FLAGS.root_output_dir, rounds_per_eval=FLAGS.rounds_per_eval, rounds_per_checkpoint=FLAGS.rounds_per_checkpoint, rounds_per_profile=FLAGS.rounds_per_profile)
def run_federated( iterative_process_builder: Callable[..., tff.templates.IterativeProcess], client_epochs_per_round: int, client_batch_size: int, clients_per_round: int, client_datasets_random_seed: Optional[int] = None, model: Optional[str] = 'cnn', total_rounds: Optional[int] = 1500, experiment_name: Optional[str] = 'federated_emnist_cr', root_output_dir: Optional[str] = '/tmp/fed_opt', **kwargs): """Runs an iterative process on the EMNIST character recognition task. This method will load and pre-process dataset and construct a model used for the task. It then uses `iterative_process_builder` to create an iterative process that it applies to the task, using `federated_research.utils.training_loop`. We assume that the iterative process has the following functional type signatures: * `initialize`: `( -> S@SERVER)` where `S` represents the server state. * `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S` represents the server state, `{B*}` represents the client datasets, and `T` represents a python `Mapping` object. The iterative process must also have a callable attribute `get_model_weights` that takes as input the state of the iterative process, and returns a `tff.learning.ModelWeights` object. Args: iterative_process_builder: A function that accepts a no-arg `model_fn`, and returns a `tff.templates.IterativeProcess`. The `model_fn` must return a `tff.learning.Model`. client_epochs_per_round: An integer representing the number of epochs of training performed per client in each training round. client_batch_size: An integer representing the batch size used on clients. clients_per_round: An integer representing the number of clients participating in each round. client_datasets_random_seed: An optional int used to seed which clients are sampled at each round. If `None`, no seed is used. model: A string specifying the model used for character recognition. Can be one of `cnn` and `2nn`, corresponding to a CNN model and a densely connected 2-layer model (respectively). total_rounds: The number of federated training rounds. experiment_name: The name of the experiment being run. This will be appended to the `root_output_dir` for purposes of writing outputs. root_output_dir: The name of the root output directory for writing experiment outputs. **kwargs: Additional arguments configuring the training loop. For details on supported arguments, see `federated_research/utils/training_utils.py`. """ emnist_train, _ = emnist_dataset.get_federated_datasets( train_client_batch_size=client_batch_size, train_client_epochs_per_round=client_epochs_per_round, only_digits=False) _, emnist_test = emnist_dataset.get_centralized_datasets(only_digits=False) input_spec = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[0]).element_spec if model == 'cnn': model_builder = functools.partial( emnist_models.create_conv_dropout_model, only_digits=False) elif model == '2nn': model_builder = functools.partial( emnist_models.create_two_hidden_layer_model, only_digits=False) else: raise ValueError( 'Cannot handle model flag [{!s}], must be one of {!s}.'.format( model, EMNIST_MODELS)) loss_builder = tf.keras.losses.SparseCategoricalCrossentropy metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()] def tff_model_fn() -> tff.learning.Model: return tff.learning.from_keras_model( keras_model=model_builder(), input_spec=input_spec, loss=loss_builder(), metrics=metrics_builder()) training_process = iterative_process_builder(tff_model_fn) client_datasets_fn = training_utils.build_client_datasets_fn( dataset=emnist_train, clients_per_round=clients_per_round, random_seed=client_datasets_random_seed) test_fn = training_utils.build_centralized_evaluate_fn( eval_dataset=emnist_test, model_builder=model_builder, loss_builder=loss_builder, metrics_builder=metrics_builder) validation_fn = lambda model_weights, round_num: test_fn(model_weights) logging.info('Training model:') logging.info(model_builder().summary()) training_loop.run( iterative_process=training_process, client_datasets_fn=client_datasets_fn, validation_fn=validation_fn, test_fn=test_fn, total_rounds=total_rounds, experiment_name=experiment_name, root_output_dir=root_output_dir, **kwargs)
def main(argv): if len(argv) > 1: raise app.UsageError('Expected no command-line arguments, ' 'got: {}'.format(argv)) emnist_train, _ = emnist_dataset.get_federated_datasets( train_client_batch_size=FLAGS.client_batch_size, train_client_epochs_per_round=FLAGS.client_epochs_per_round, only_digits=False) _, emnist_test = emnist_dataset.get_centralized_datasets() if FLAGS.model == 'cnn': model_builder = functools.partial( emnist_models.create_conv_dropout_model, only_digits=False) elif FLAGS.model == '2nn': model_builder = functools.partial( emnist_models.create_two_hidden_layer_model, only_digits=False) else: raise ValueError('Cannot handle model flag [{!s}].'.format(FLAGS.model)) loss_builder = tf.keras.losses.SparseCategoricalCrossentropy metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()] if FLAGS.uniform_weighting: client_weighting = tff.learning.ClientWeighting.UNIFORM else: client_weighting = tff.learning.ClientWeighting.NUM_EXAMPLES def model_fn(): return tff.learning.from_keras_model( model_builder(), loss_builder(), input_spec=emnist_test.element_spec, metrics=metrics_builder()) if FLAGS.noise_multiplier is not None: if not FLAGS.uniform_weighting: raise ValueError( 'Differential privacy is only implemented for uniform weighting.') if FLAGS.noise_multiplier <= 0: raise ValueError('noise_multiplier must be positive if DP is enabled.') if FLAGS.clip is None or FLAGS.clip <= 0: raise ValueError('clip must be positive if DP is enabled.') if not FLAGS.adaptive_clip_learning_rate: aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_fixed( noise_multiplier=FLAGS.noise_multiplier, clients_per_round=FLAGS.clients_per_round, clip=FLAGS.clip) else: if FLAGS.adaptive_clip_learning_rate <= 0: raise ValueError('adaptive_clip_learning_rate must be positive if ' 'adaptive clipping is enabled.') aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_adaptive( noise_multiplier=FLAGS.noise_multiplier, clients_per_round=FLAGS.clients_per_round, initial_l2_norm_clip=FLAGS.clip, target_unclipped_quantile=FLAGS.target_unclipped_quantile, learning_rate=FLAGS.adaptive_clip_learning_rate) else: if FLAGS.uniform_weighting: aggregation_factory = tff.aggregators.UnweightedMeanFactory() else: aggregation_factory = tff.aggregators.MeanFactory() server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('server') client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('client') iterative_process = tff.learning.build_federated_averaging_process( model_fn=model_fn, server_optimizer_fn=server_optimizer_fn, client_weighting=client_weighting, client_optimizer_fn=client_optimizer_fn, model_update_aggregation_factory=aggregation_factory) client_datasets_fn = training_utils.build_client_datasets_fn( emnist_train, FLAGS.clients_per_round) evaluate_fn = training_utils.build_centralized_evaluate_fn( eval_dataset=emnist_test, model_builder=model_builder, loss_builder=loss_builder, metrics_builder=metrics_builder) validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights) logging.info('Training model:') logging.info(model_builder().summary()) # Log hyperparameters to CSV hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags()) results_dir = os.path.join(FLAGS.root_output_dir, 'results', FLAGS.experiment_name) utils_impl.create_directory_if_not_exists(results_dir) hparam_file = os.path.join(results_dir, 'hparams.csv') utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file) training_loop.run( iterative_process=iterative_process, client_datasets_fn=client_datasets_fn, validation_fn=validation_fn, total_rounds=FLAGS.total_rounds, experiment_name=FLAGS.experiment_name, root_output_dir=FLAGS.root_output_dir, rounds_per_eval=FLAGS.rounds_per_eval, rounds_per_checkpoint=FLAGS.rounds_per_checkpoint, rounds_per_profile=FLAGS.rounds_per_profile)
def main(argv): if len(argv) > 1: raise app.UsageError('Expected no command-line arguments, ' 'got: {}'.format(argv)) emnist_train, _ = emnist_dataset.get_federated_datasets( train_client_batch_size=FLAGS.client_batch_size, train_client_epochs_per_round=FLAGS.client_epochs_per_round, only_digits=False) _, emnist_test = emnist_dataset.get_centralized_datasets() if FLAGS.model == 'cnn': model_builder = functools.partial( emnist_models.create_conv_dropout_model, only_digits=False) elif FLAGS.model == '2nn': model_builder = functools.partial( emnist_models.create_two_hidden_layer_model, only_digits=False) else: raise ValueError('Cannot handle model flag [{!s}].'.format( FLAGS.model)) loss_builder = tf.keras.losses.SparseCategoricalCrossentropy metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()] if FLAGS.uniform_weighting: def client_weight_fn(local_outputs): del local_outputs return 1.0 else: client_weight_fn = None # Defaults to the number of examples per client. def model_fn(): return tff.learning.from_keras_model( model_builder(), loss_builder(), input_spec=emnist_test.element_spec, metrics=metrics_builder()) if FLAGS.noise_multiplier is not None: if not FLAGS.uniform_weighting: raise ValueError( 'Differential privacy is only implemented for uniform weighting.' ) dp_query = tff.utils.build_dp_query( clip=FLAGS.clip, noise_multiplier=FLAGS.noise_multiplier, expected_total_weight=FLAGS.clients_per_round, adaptive_clip_learning_rate=FLAGS.adaptive_clip_learning_rate, target_unclipped_quantile=FLAGS.target_unclipped_quantile, clipped_count_budget_allocation=FLAGS. clipped_count_budget_allocation, expected_clients_per_round=FLAGS.clients_per_round) weights_type = tff.learning.framework.weights_type_from_model(model_fn) aggregation_process = tff.utils.build_dp_aggregate_process( weights_type.trainable, dp_query) else: aggregation_process = None server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags( 'server') client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags( 'client') iterative_process = tff.learning.build_federated_averaging_process( model_fn=model_fn, server_optimizer_fn=server_optimizer_fn, client_weighting=client_weight_fn, client_optimizer_fn=client_optimizer_fn, aggregation_process=aggregation_process) client_datasets_fn = training_utils.build_client_datasets_fn( emnist_train, FLAGS.clients_per_round) evaluate_fn = training_utils.build_centralized_evaluate_fn( eval_dataset=emnist_test, model_builder=model_builder, loss_builder=loss_builder, metrics_builder=metrics_builder) validation_fn = lambda model_weights, round_num: evaluate_fn(model_weights) logging.info('Training model:') logging.info(model_builder().summary()) hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags()) training_loop_dict = utils_impl.lookup_flag_values(training_loop_flags) training_loop.run(iterative_process=iterative_process, client_datasets_fn=client_datasets_fn, validation_fn=validation_fn, hparam_dict=hparam_dict, **training_loop_dict)
def run_experiment(): """Data preprocessing and experiment execution.""" emnist_train, _ = emnist_dataset.get_federated_datasets( train_client_batch_size=FLAGS.client_batch_size, train_client_epochs_per_round=FLAGS.client_epochs_per_round, only_digits=FLAGS.only_digits) _, emnist_test = emnist_dataset.get_centralized_datasets( only_digits=FLAGS.only_digits) example_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[0]) input_spec = example_dataset.element_spec # Build optimizer functions from flags client_optimizer_fn = functools.partial( utils_impl.create_optimizer_from_flags, 'client') server_optimizer_fn = functools.partial( utils_impl.create_optimizer_from_flags, 'server') def tff_model_fn(): return tff.learning.from_keras_model( keras_model=model_builder(), input_spec=input_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) if FLAGS.use_compression: # We create a `tff.templates.MeasuredProcess` for broadcast process and a # `tff.aggregators.WeightedAggregationFactory` for aggregation by providing # the `_broadcast_encoder_fn` and `_mean_encoder_fn` to corresponding # utilities. The fns are called once for each of the model weights created # by tff_model_fn, and return instances of appropriate encoders. encoded_broadcast_process = ( tff.learning.framework.build_encoded_broadcast_process_from_model( tff_model_fn, _broadcast_encoder_fn)) aggregator = tff.aggregators.MeanFactory( tff.aggregators.EncodedSumFactory(_mean_encoder_fn)) else: encoded_broadcast_process = None aggregator = None # Construct the iterative process iterative_process = tff.learning.build_federated_averaging_process( model_fn=tff_model_fn, client_optimizer_fn=client_optimizer_fn, server_optimizer_fn=server_optimizer_fn, broadcast_process=encoded_broadcast_process, model_update_aggregation_factory=aggregator) iterative_process = ( tff.simulation.compose_dataset_computation_with_iterative_process( emnist_train.dataset_computation, iterative_process)) # Create a client sampling function, mapping integer round numbers to lists # of client ids. client_selection_fn = functools.partial( tff.simulation.build_uniform_sampling_fn(emnist_train.client_ids), size=FLAGS.clients_per_round) # Create a validation function evaluate_fn = tff.learning.build_federated_evaluation(tff_model_fn) def validation_fn(state, round_num): if round_num % FLAGS.rounds_per_eval == 0: return evaluate_fn(state.model, [emnist_test]) else: return {} # Log hyperparameters to CSV hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags()) results_dir = os.path.join(FLAGS.root_output_dir, 'results', FLAGS.experiment_name) utils_impl.create_directory_if_not_exists(results_dir) hparam_file = os.path.join(results_dir, 'hparams.csv') utils_impl.atomic_write_series_to_csv(hparam_dict, hparam_file) checkpoint_manager, metrics_managers = _configure_managers() tff.simulation.run_simulation( process=iterative_process, client_selection_fn=client_selection_fn, validation_fn=validation_fn, total_rounds=FLAGS.total_rounds, file_checkpoint_manager=checkpoint_manager, metrics_managers=metrics_managers)
def run_federated( iterative_process_builder: Callable[..., tff.templates.IterativeProcess], client_epochs_per_round: int, client_batch_size: int, clients_per_round: int, client_datasets_random_seed: Optional[int] = None, total_rounds: Optional[int] = 1500, experiment_name: Optional[str] = 'federated_emnist_ae', root_output_dir: Optional[str] = '/tmp/fed_opt', max_eval_batches: Optional[int] = None, **kwargs): """Runs an iterative process on the EMNIST autoencoder task. This method will load and pre-process dataset and construct a model used for the task. It then uses `iterative_process_builder` to create an iterative process that it applies to the task, using `federated_research.utils.training_loop`. We assume that the iterative process has the following functional type signatures: * `initialize`: `( -> S@SERVER)` where `S` represents the server state. * `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S` represents the server state, `{B*}` represents the client datasets, and `T` represents a python `Mapping` object. The iterative process must also have a callable attribute `get_model_weights` that takes as input the state of the iterative process, and returns a `tff.learning.ModelWeights` object. Args: iterative_process_builder: A function that accepts a no-arg `model_fn`, and returns a `tff.templates.IterativeProcess`. The `model_fn` must return a `tff.learning.Model`. client_epochs_per_round: An integer representing the number of epochs of training performed per client in each training round. client_batch_size: An integer representing the batch size used on clients. clients_per_round: An integer representing the number of clients participating in each round. client_datasets_random_seed: An optional int used to seed which clients are sampled at each round. If `None`, no seed is used. total_rounds: The number of federated training rounds. experiment_name: The name of the experiment being run. This will be appended to the `root_output_dir` for purposes of writing outputs. root_output_dir: The name of the root output directory for writing experiment outputs. max_eval_batches: If set to a positive integer, evaluation datasets are capped to at most that many batches. If set to None or a nonpositive integer, the full evaluation datasets are used. **kwargs: Additional arguments configuring the training loop. For details on supported arguments, see `federated_research/utils/training_utils.py`. """ emnist_train, _ = emnist_dataset.get_federated_datasets( train_client_batch_size=client_batch_size, train_client_epochs_per_round=client_epochs_per_round, only_digits=False, emnist_task='autoencoder') _, emnist_test = emnist_dataset.get_centralized_datasets( train_batch_size=client_batch_size, only_digits=False, emnist_task='autoencoder') if max_eval_batches and max_eval_batches >= 1: emnist_test = emnist_test.take(max_eval_batches) input_spec = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[0]).element_spec model_builder = emnist_ae_models.create_autoencoder_model loss_builder = functools.partial(tf.keras.losses.MeanSquaredError, reduction=tf.keras.losses.Reduction.SUM) metrics_builder = lambda: [tf.keras.metrics.MeanSquaredError()] def tff_model_fn() -> tff.learning.Model: return tff.learning.from_keras_model(keras_model=model_builder(), input_spec=input_spec, loss=loss_builder(), metrics=metrics_builder()) training_process = iterative_process_builder(tff_model_fn) client_datasets_fn = training_utils.build_client_datasets_fn( dataset=emnist_train, clients_per_round=clients_per_round, random_seed=client_datasets_random_seed) evaluate_fn = training_utils.build_centralized_evaluate_fn( eval_dataset=emnist_test, model_builder=model_builder, loss_builder=loss_builder, metrics_builder=metrics_builder) logging.info('Training model:') logging.info(model_builder().summary()) training_loop.run(iterative_process=training_process, client_datasets_fn=client_datasets_fn, validation_fn=evaluate_fn, test_fn=evaluate_fn, total_rounds=total_rounds, experiment_name=experiment_name, root_output_dir=root_output_dir, **kwargs)