Example #1
0
    def build_model(self):
        self.X = tf.placeholder("float", [None, self.width, self.height])
        if self.is_train:
            self.trX, self.trY = read_mat(
                './data/' + self.data_set + '.mat', True)
            self.Y = tf.placeholder("float", [None, self.width, self.height])
        else:
            self.trX = read_mat('./data/' + self.test_set + '.mat', False)
        self.num_of_data = len(self.trX)

        if self.is_train:
            loss_tmp, grad_tmp = self.loss_and_grad()
            with tf.device('/cpu:0'):
                self.cost = tf.reduce_mean(loss_tmp)
                grad = average_gradients(grad_tmp)
                tf.summary.scalar("cost", self.cost)
        else:
            with tf.variable_scope(tf.get_variable_scope()):
                self.logit = self.inference(self.X)

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.device('/cpu:0'):
            with tf.control_dependencies(update_ops):
                self.train_op = self.optimizer.apply_gradients(grad)

        self.summary = tf.summary.merge_all()

        self.saver = tf.train.Saver()
Example #2
0
def test5():
    print("\n\nTest 5 - Algorithm Tweaks (Bias & Variance)")
    print("Expected / Actual:")

    print("\nRegularized Linear Regression: ")
    X, y = ut.read_mat('mat/ex5data1.mat')
    X = ut.create_design(X)
    theta = np.array([1, 1])
    print("303.993 / ", alg.SSD(theta, X, y, 1))
    grad = alg.SSD_gradient(theta, X, y, 1)
    print("-15.30 / ", grad[0])
    print("598.250 / ", grad[1])

    print("\nLearning Curve:")
    raw = ut.read_mat_raw('mat/ex5data1.mat')
    X = raw['X']
    y = raw['y'].reshape(-1)

    Xval = raw['Xval']
    yval = raw['yval'].reshape(-1)
    print("Check plot")
    # pt.plot_learning_curve(ut.create_design(X), y, ut.create_design(Xval), yval, 0)

    print("\nFitting polynomial regression:")
    p = 8
    X_poly = ut.poly_features(X, p)
    X_poly, mu, sigma = ut.normalize_features(X_poly)
    X_poly = ut.create_design(X_poly)

    Xval = ut.poly_features(Xval, p)
    Xval -= mu
    Xval /= sigma
    Xval = ut.create_design(Xval)

    l = 0.01
    theta = alg.parametrize_linear(X_poly, y, l)

    print("Check plot, l =", l)
    pt.fit_plot(X, y, mu, sigma, theta, p)
    pt.plot_learning_curve(X_poly, y, Xval, yval, l)

    print("\nOptimize regularization:")
    print("Check plot")

    l = pt.plot_validation_curve(X_poly, y, Xval, yval)

    Xtest = raw['Xtest']
    ytest = raw['ytest'].reshape(-1)
    Xtest = ut.poly_features(Xtest, p)
    Xtest -= mu
    Xtest /= sigma
    Xtest = ut.create_design(Xtest)

    theta = alg.parametrize_linear(X_poly, y, l)
    print("3.8599 / ", alg.SSD(theta, Xtest, ytest, 0))

    print("\nRandomized learning curve:")
    print("Check plot")
    pt.plot_randomized_learning_curve(X_poly, y, Xval, yval, 0.01)
    return
Example #3
0
def bruteforce(slot_inicial, nslots):
    
    # Inicializacao e importacao de dados
    
    mat_file = utils.read_mat("final.mat")
    
    s2 = mat_file["s2"]
    P = mat_file["P"]
    PI = mat_file["PI"]
    
    n_maquinas = mat_file["n_maquinas"]
    
    pesos = mat_file["pesos"]
    
    x_teste = mat_file["x_teste"]    
    Consumo_total = x_teste[slot_inicial:slot_inicial+nslots]
    
    [lista,combinacoes] = utils.init_markov(nslots,n_maquinas, pesos)
    
        
    while(1):
        cost = 0
        
        
                
    
    return
Example #4
0
def test3():
    print("\n\nTest 3 - Multiclass Logistic Regression & Neural Networks")
    print("Expected / Actual:")

    print("\nMulticlass LR:")
    X, y = ut.read_mat('mat/ex3data1.mat')
    for i in range(y.shape[0]):
        if (y[i] == 10): y[i] = 0

    theta = np.array([-2, -1, 1, 2])
    X_t = ut.create_design(np.arange(1, 16, 1).reshape(3, 5).T / 10)
    y_t = np.array(([1, 0, 1, 0, 1]))
    l_t = 3
    cost = alg.cross_ent(theta, X_t, y_t, l_t)
    grad = alg.cross_ent_gradient(theta, X_t, y_t, l_t)
    print("2.534819 / %f" % cost)
    print("0.146561 / %f" % grad[0])
    print("-0.548558 / %f" % grad[1])
    print("0.724722 / %f" % grad[2])
    print("1.398003 / %f" % grad[3])

    degree = 10
    l = 0.1
    theta = alg.multiclass_logreg(X, y, l, degree)
    p = ut.multiclass_prediction(theta, X)
    print(">= 95 / %f" % (np.mean(p == y) * 100))

    print("\nNeural Networks (Forward Propagation): ")
    data = ut.read_mat_raw('mat/ex3weights.mat')
    theta1 = data['Theta1']
    theta2 = data['Theta2']

    X, y = ut.read_mat('mat/ex3data1.mat')
    p = test3neuralnet(theta1, theta2, X)
    print("Predicted: ", p)
    print("Actual: ", y)
    print("Expected vs. Actual Accuracy: 97.52 / %f" % (np.mean(p == y) * 100))
    return
def main(configs):

    # read mat data from file
    input_data = utl.read_mat(configs['DATA_PATH'])

    # data preprocessing
    input_data, proc_mask = utl.data_preprocessing(input_data,\
            configs['MONTH_SELECTION'])

    # generate feature vectors
    feats, labels = generate_features(input_data)

    # backup feats and labels
    feats_backup = feats
    labels_backup = labels

    # weather classification
    feats, labels, masks = weather_classification(feats, configs['MODE'],
                                                  labels)

    if configs['MODE'] == 'grid search':

        grid_search_wrapper(feats, labels, configs)

    elif configs['MODE'] == 'holdout training':

        holdout_train_wrapper(feats, labels, configs, masks)

    elif configs['MODE'] == 'weather prediction':

        preds = weather_prediction(feats, labels, configs, masks)

        # compare predicted irradiance drop
        utl.plot_irradiance_drop(feats_backup[:, 5] - preds,
                                 feats_backup[:, 5] - labels_backup)
        utl.plot_irradiance_drop(preds, labels_backup)
        ''' regroup the data '''
        preds_cube, labels_cube = utl.regroup_data(preds, labels_backup,
                                                   proc_mask)
        utl.compare_daily_mean(preds_cube, labels_cube, sensor_selection=24)
        plt.show()
Example #6
0
def bruteforce(slot_inicial, nslots):

    # Inicializacao e importacao de dados

    mat_file = utils.read_mat("final.mat")

    s2 = mat_file["s2"]
    P = mat_file["P"]
    PI = mat_file["PI"]

    n_maquinas = mat_file["n_maquinas"]

    pesos = mat_file["pesos"]

    x_teste = mat_file["x_teste"]
    Consumo_total = x_teste[slot_inicial:slot_inicial + nslots]

    [lista, combinacoes] = utils.init_markov(nslots, n_maquinas, pesos)

    while (1):
        cost = 0

    return
Example #7
0
def test4():
    print("\n\nTest 4 - Neural Networks")
    print("Expected / Actual:")

    print("\nForward Propagation & Cost: ")
    X, y = ut.read_mat('mat/ex4data1.mat')
    data = io.loadmat('mat/ex4weights.mat')
    w1 = data['Theta1'][:, 1:]
    b1 = data['Theta1'][:, 0]
    w2 = data['Theta2'][:, 1:]
    b2 = data['Theta2'][:, 0]

    layers = np.array([400, 25, 10])
    y = nn.Neural.binarize_ground_truth(y, 10)
    net = nn.Neural(layers, X, y)
    net.weight = np.concatenate([w1.flatten(), w2.flatten()])
    net.bias = np.concatenate([b1.flatten(), b2.flatten()])
    result = net.fp().T

    print("0.00011266 / %.8f" % result[0, 0])
    print("0.9907 / %.4f" % result[2665, 4])
    print("0.000047972 / %.9f" % result[321, 0])
    print("0.0819 / %.4f" % result[-1, -1])
    print("0.287629 / %.6f" % net.cost())

    print("\nRegularized Cost:")
    net.l = 1
    print("0.383770 / %.6f" % net.cost())

    print("\nSigmoid Derivative:")
    print("0.25 / ", net.sigmoid_deriv(net.sigmoid(0)))

    net.l = 0
    print("\nBackpropagation: ")
    grad = net.bp()
    print("(10285,) /", grad.shape)
    print("0.0000015972 /%.10f" % grad[5])
    print("0.00015668 / %.8f" % grad[666])
    print("-0.0011 / %.4f" % grad[-(net.bias.shape[0] + 55)])
    print("0.00077333 / %.8f" % grad[-(net.bias.shape[0] + 1)])

    print("0.000061871 / %.9f" % grad[-(net.bias.shape[0])])
    print("-0.000037065 / %.9f" % grad[-(net.bias.shape[0] - 15)])
    print("0.00024755 / %.8f" % grad[-1])
    print("< 1e-9 / ", nn.Neural.debug_bp())

    print("\nBackpropagation, with regularization:")
    net.l = 3
    print("0.576051 / %f" % net.binary_cross_entropy())
    net.fp()
    net.bp()
    print("< 1e-9 /", nn.Neural.debug_bp())

    print("\nGradient descent: ")
    net = nn.Neural(layers, X, y)
    net.l = 300
    net.parametrize(1000)
    p = net.predict(X)
    print("Training accuracy: ", np.mean(p == y) * 100)

    return
import tensorflow as tf
import numpy as np, sys, os
from sklearn.utils import shuffle
from scipy.ndimage import imread
from scipy.misc import imresize
import matplotlib.pyplot as plt
from utils import read_mat

np.random.seed(678)
tf.set_random_seed(1400)

# load DataSet
train_X, train_label = read_mat('./data/data_set.mat', True)
test_X, test_label = read_mat('./data/test_set.mat', True)
train_images = np.expand_dims(train_X[0:1400, :, :], axis=3)
train_labels = np.expand_dims(train_label[0:1400, :, :], axis=3)
train_images = (train_images - train_images.min()) / (train_images.max() -
                                                      train_images.min())
train_labels = (train_labels - train_labels.min()) / (train_labels.max() -
                                                      train_labels.min())

test_images = np.expand_dims(test_X[0:400, :, :], axis=3)
test_labels = np.expand_dims(test_label[0:400, :, :], axis=3)
test_images = (test_images - test_images.min()) / (test_images.max() -
                                                   test_images.min())
test_labels = (test_labels - test_labels.min()) / (test_labels.max() -
                                                   test_labels.min())


def tf_relu(x):
    return tf.nn.relu(x)
Example #9
0
import utils
import scipy
import numpy

# Inicializacao e importacao de dados
print "initializing and loading data"

#mat_file = utils.read_mat("final.mat")
mat_file = utils.read_mat("Final35.mat")

# Variancia
s2 = mat_file["s2"]

# Matriz de probabilidades
matriz_probabilidades = mat_file["probab"]

# Consumo total
Consumo_total = mat_file["x_teste"]

# Vector com o numero de submaquinas de cada maquina
n_maquinas = mat_file["n_maquinas"][0].tolist()

# Vector com o consumo de cada submaquina
pesos = mat_file["pesos"].tolist()[0]

# Variaveis auxiliares

l = scipy.shape(pesos)[0]
t = scipy.shape(Consumo_total)[0]

# Matriz de armazenamento dos resultados de cada problema
Example #10
0
import utils
import scipy
import numpy

# Inicializacao e importacao de dados
print "initializing and loading data"

#mat_file = utils.read_mat("final.mat")
mat_file = utils.read_mat("Final35.mat")


# Variancia
s2 = mat_file["s2"]

# Matriz de probabilidades
matriz_probabilidades = mat_file["probab"]

# Consumo total
Consumo_total = mat_file["x_teste"]

# Vector com o numero de submaquinas de cada maquina
n_maquinas = mat_file["n_maquinas"][0].tolist()

# Vector com o consumo de cada submaquina
pesos = mat_file["pesos"].tolist()[0]

# Variaveis auxiliares

l = scipy.shape(pesos)[0]
t = scipy.shape(Consumo_total)[0]
Example #11
0
import os, glob
from PIL import Image
from utils import read_mat

DATA_DIR = os.path.abspath(
    os.path.join(__file__, os.path.pardir, os.path.pardir))
OUTPUT_DIR = os.path.join(DATA_DIR, 'processed', 'annotations')

try:
    os.makedirs(OUTPUT_DIR)
except:
    pass

annotation_files = glob.glob(
    os.path.join(DATA_DIR, 'raw', 'clothing-co-parsing', 'annotations',
                 'pixel-level', '*.mat'))

for f in annotation_files:
    image_name = os.path.splitext(os.path.basename(f))[0]

    annotation = read_mat(f)['groundtruth']
    annotation = Image.fromarray(annotation)
    annotation.save(os.path.join(OUTPUT_DIR, image_name + '.png'))
Example #12
0
import os
import numpy as np
from utils import read_mat

DATA_DIR = os.path.abspath(
    os.path.join(__file__, os.path.pardir, os.path.pardir))
OUTPUT_DIR = os.path.join(DATA_DIR, 'metadata')

labels_filepath = os.path.join(DATA_DIR, 'raw', 'clothing-co-parsing',
                               'label_list.mat')

labels = read_mat(labels_filepath)['label_list'][0]
labels = np.array([l[0] for i, l in enumerate(labels)])
labels = np.stack((range(len(labels)), labels), axis=1)

np.savetxt(os.path.join(OUTPUT_DIR, 'labels.txt'),
           labels,
           fmt='%s',
           delimiter=',')
Example #13
0
import utils
import scipy
import numpy
import unfold

# Inicializacao e importacao de dados
print "initializing and loading data"

mat_file = utils.read_mat("final.mat")

# Variancia
s2 = mat_file["s2"]

# Matriz de probabilidades
matriz_probabilidades = mat_file["probab"]

# Consumo total
Consumo_total = mat_file["x_teste"]

# Vector com o numero de submaquinas de cada maquina
n_maquinas = mat_file["n_maquinas"]

# Vector com o consumo de cada submaquina
pesos = mat_file["pesos"].tolist()[0]

# Variaveis auxiliares

l = scipy.shape(pesos)[0]
t = scipy.shape(Consumo_total)[0]

# Matriz de armazenamento dos resultados de cada problema