def __init__(
         self,
         num_features=kMinNumFeatureDefault,
         num_levels=3,  # number of pyramid levels for detector  
         scale_factor=1.2,  # detection scale factor (if it can be set, otherwise it is automatically computed) 
         detector_type=FeatureDetectorTypes.FAST,
         descriptor_type=FeatureDescriptorTypes.NONE,
         match_ratio_test=kRatioTest,
         tracker_type=FeatureTrackerTypes.LK):
     super().__init__(num_features=num_features,
                      num_levels=num_levels,
                      scale_factor=scale_factor,
                      detector_type=detector_type,
                      descriptor_type=descriptor_type,
                      tracker_type=tracker_type)
     self.feature_manager = feature_manager_factory(
         num_features=num_features,
         num_levels=num_levels,
         scale_factor=scale_factor,
         detector_type=detector_type,
         descriptor_type=descriptor_type)
     #if num_levels < 3:
     #    Printer.green('LkFeatureTracker: forcing at least 3 levels on LK pyr optic flow')
     #    num_levels = 3
     optic_flow_num_levels = max(kLkPyrOpticFlowNumLevelsMin, num_levels)
     Printer.green('LkFeatureTracker: num levels on LK pyr optic flow: ',
                   optic_flow_num_levels)
     # we use LK pyr optic flow for matching
     self.lk_params = dict(winSize=(21, 21),
                           maxLevel=optic_flow_num_levels,
                           criteria=(cv2.TERM_CRITERIA_EPS
                                     | cv2.TERM_CRITERIA_COUNT, 30, 0.01))
Example #2
0
 def locally_optimize(self,
                      kf_ref,
                      verbose=False,
                      rounds=10,
                      abort_flag=g2o.Flag()):
     keyframes, points, ref_keyframes = self.local_map.update(kf_ref)
     print('local optimization window: ',
           sorted([kf.id for kf in keyframes]))
     print('                     refs: ',
           sorted([kf.id for kf in ref_keyframes]))
     print('                   #points: ', len(points))
     #print('                   points: ', sorted([p.id for p in points]))
     #err = optimizer_g2o.optimize(frames, points, None, False, verbose, rounds)
     err, ratio_bad_observations = optimizer_g2o.local_bundle_adjustment(
         keyframes,
         points,
         ref_keyframes,
         False,
         verbose,
         rounds,
         abort_flag=abort_flag,
         map_lock=self.update_lock)
     Printer.green('local optimization - perc bad observations: %.2f %%' %
                   (ratio_bad_observations * 100))
     return err
Example #3
0
            if display2d is not None:
                getchar()
            else:
                key_cv = cv2.waitKey(
                    0) & 0xFF  # useful when drawing stuff for debugging

        if do_step and img_id > 1:
            # stop at each frame
            if display2d is not None:
                getchar()
            else:
                key_cv = cv2.waitKey(0) & 0xFF

        if key == 'd' or (key_cv == ord('d')):
            do_step = not do_step
            Printer.green('do step: ', do_step)

        if key == 'q' or (key_cv == ord('q')):
            if display2d is not None:
                display2d.quit()
            if viewer3D is not None:
                viewer3D.quit()
            if matched_points_plt is not None:
                matched_points_plt.quit()
            break

        if viewer3D is not None:
            is_paused = not viewer3D.is_paused()

    slam.quit()
Example #4
0
    def track(self, img, frame_id, timestamp=None):
        Printer.cyan('@tracking')
        time_start = time.time()

        # check image size is coherent with camera params
        print("img.shape: ", img.shape)
        print("camera ", self.camera.height, " x ", self.camera.width)
        assert img.shape[0:2] == (self.camera.height, self.camera.width)
        if timestamp is not None:
            print('timestamp: ', timestamp)

        self.timer_main_track.start()

        # build current frame
        self.timer_frame.start()
        f_cur = Frame(img, self.camera, timestamp=timestamp)
        self.f_cur = f_cur
        print("frame: ", f_cur.id)
        self.timer_frame.refresh()

        # reset indexes of matches
        self.idxs_ref = []
        self.idxs_cur = []

        if self.state == SlamState.NO_IMAGES_YET:
            # push first frame in the inizializer
            self.intializer.init(f_cur)
            self.state = SlamState.NOT_INITIALIZED
            return  # EXIT (jump to second frame)

        if self.state == SlamState.NOT_INITIALIZED:
            # try to inizialize
            initializer_output, intializer_is_ok = self.intializer.initialize(
                f_cur, img)
            if intializer_is_ok:
                kf_ref = initializer_output.kf_ref
                kf_cur = initializer_output.kf_cur
                # add the two initialized frames in the map
                self.map.add_frame(
                    kf_ref)  # add first frame in map and update its frame id
                self.map.add_frame(
                    kf_cur)  # add second frame in map and update its frame id
                # add the two initialized frames as keyframes in the map
                self.map.add_keyframe(
                    kf_ref)  # add first keyframe in map and update its kid
                self.map.add_keyframe(
                    kf_cur)  # add second keyframe in map and update its kid
                kf_ref.init_observations()
                kf_cur.init_observations()
                # add points in map
                new_pts_count, _, _ = self.map.add_points(
                    initializer_output.pts,
                    None,
                    kf_cur,
                    kf_ref,
                    initializer_output.idxs_cur,
                    initializer_output.idxs_ref,
                    img,
                    do_check=False)
                Printer.green("map: initialized %d new points" %
                              (new_pts_count))
                # update covisibility graph connections
                kf_ref.update_connections()
                kf_cur.update_connections()

                # update tracking info
                self.f_cur = kf_cur
                self.f_cur.kf_ref = kf_ref
                self.kf_ref = kf_cur  # set reference keyframe
                self.kf_last = kf_cur  # set last added keyframe
                self.map.local_map.update(self.kf_ref)
                self.state = SlamState.OK

                self.update_tracking_history()
                self.motion_model.update_pose(kf_cur.timestamp,
                                              kf_cur.position,
                                              kf_cur.quaternion)
                self.motion_model.is_ok = False  # after initialization you cannot use motion model for next frame pose prediction (time ids of initialized poses may not be consecutive)

                self.intializer.reset()

                if kUseDynamicDesDistanceTh:
                    self.descriptor_distance_sigma = self.dyn_config.update_descriptor_stat(
                        kf_ref, kf_cur, initializer_output.idxs_ref,
                        initializer_output.idxs_cur)
            return  # EXIT (jump to next frame)

        # get previous frame in map as reference
        f_ref = self.map.get_frame(-1)
        #f_ref_2 = self.map.get_frame(-2)
        self.f_ref = f_ref

        # add current frame f_cur to map
        self.map.add_frame(f_cur)
        self.f_cur.kf_ref = self.kf_ref

        # reset pose state flag
        self.pose_is_ok = False

        with self.map.update_lock:
            # check for map point replacements in previous frame f_ref (some points might have been replaced by local mapping during point fusion)
            self.f_ref.check_replaced_map_points()

            if kUseDynamicDesDistanceTh:
                print('descriptor_distance_sigma: ',
                      self.descriptor_distance_sigma)
                self.local_mapping.descriptor_distance_sigma = self.descriptor_distance_sigma

            # udpdate (velocity) old motion model                                             # c1=ref_ref, c2=ref, c3=cur;  c=cur, r=ref
            #self.velocity = np.dot(f_ref.pose, inv_T(f_ref_2.pose))                          # Tc2c1 = Tc2w * Twc1   (predicted Tcr)
            #self.predicted_pose = g2o.Isometry3d(np.dot(self.velocity, f_ref.pose))          # Tc3w = Tc2c1 * Tc2w   (predicted Tcw)

            # set intial guess for current pose optimization
            if kUseMotionModel and self.motion_model.is_ok:
                print('using motion model for next pose prediction')
                # update f_ref pose according to its reference keyframe (the pose of the reference keyframe could be updated by local mapping)
                self.f_ref.update_pose(
                    self.tracking_history.relative_frame_poses[-1] *
                    self.f_ref.kf_ref.isometry3d)
                # predict pose by using motion model
                self.predicted_pose, _ = self.motion_model.predict_pose(
                    timestamp, self.f_ref.position, self.f_ref.orientation)
                f_cur.update_pose(self.predicted_pose)
            else:
                print('setting f_cur.pose <-- f_ref.pose')
                # use reference frame pose as initial guess
                f_cur.update_pose(f_ref.pose)

            # track camera motion from f_ref to f_cur
            self.track_previous_frame(f_ref, f_cur)

            if not self.pose_is_ok:
                # if previous track didn't go well then track the camera motion from kf_ref to f_cur
                self.track_keyframe(self.kf_ref, f_cur)

            # now, having a better estimate of f_cur pose, we can find more map point matches:
            # find matches between {local map points} (points in the local map) and {unmatched keypoints of f_cur}
            if self.pose_is_ok:
                self.track_local_map(f_cur)

        # end block {with self.map.update_lock:}

        # TODO: add relocalization

        # HACK: since local mapping is not fast enough in python (and tracking is not in real-time) => give local mapping more time to process stuff
        self.wait_for_local_mapping(
        )  # N.B.: this must be outside the `with self.map.update_lock:` block

        with self.map.update_lock:

            # update slam state
            if self.pose_is_ok:
                self.state = SlamState.OK
            else:
                self.state = SlamState.LOST
                Printer.red('tracking failure')

            # update motion model state
            self.motion_model.is_ok = self.pose_is_ok

            if self.pose_is_ok:  # if tracking was successful

                # update motion model
                self.motion_model.update_pose(timestamp, f_cur.position,
                                              f_cur.quaternion)

                f_cur.clean_vo_map_points()

                # do we need a new KeyFrame?
                need_new_kf = self.need_new_keyframe(f_cur)

                if need_new_kf:
                    Printer.green('adding new KF with frame id % d: ' %
                                  (f_cur.id))
                    if kLogKFinfoToFile:
                        self.kf_info_logger.info(
                            'adding new KF with frame id % d: ' % (f_cur.id))
                    kf_new = KeyFrame(f_cur, img)
                    self.kf_last = kf_new
                    self.kf_ref = kf_new
                    f_cur.kf_ref = kf_new

                    self.local_mapping.push_keyframe(kf_new)
                    if not kLocalMappingOnSeparateThread:
                        self.local_mapping.do_local_mapping()
                else:
                    Printer.yellow('NOT KF')

                # From ORBSLAM2:
                # Clean outliers once keyframe generation has been managed:
                # we allow points with high innovation (considered outliers by the Huber Function)
                # pass to the new keyframe, so that bundle adjustment will finally decide
                # if they are outliers or not. We don't want next frame to estimate its position
                # with those points so we discard them in the frame.
                f_cur.clean_outlier_map_points()

            if self.f_cur.kf_ref is None:
                self.f_cur.kf_ref = self.kf_ref

            self.update_tracking_history(
            )  # must stay after having updated slam state (self.state)

            Printer.green("map: %d points, %d keyframes" %
                          (self.map.num_points(), self.map.num_keyframes()))
            #self.update_history()

            self.timer_main_track.refresh()

            duration = time.time() - time_start
            print('tracking duration: ', duration)
Example #5
0
    def initialize(self, f_cur, img_cur):

        if self.num_failures > kNumOfFailuresAfterWichNumMinTriangulatedPointsIsHalved:
            self.num_min_triangulated_points = 0.5 * Parameters.kInitializerNumMinTriangulatedPoints
            self.num_failures = 0
            Printer.orange(
                'Initializer: halved min num triangulated features to ',
                self.num_min_triangulated_points)

        # prepare the output
        out = InitializerOutput()
        is_ok = False

        #print('num frames: ', len(self.frames))

        # if too many frames have passed, move the current idx_f_ref forward
        # this is just one very simple policy that can be used
        if self.f_ref is not None:
            if f_cur.id - self.f_ref.id > kMaxIdDistBetweenIntializingFrames:
                self.f_ref = self.frames[-1]  # take last frame in the buffer
                #self.idx_f_ref = len(self.frames)-1  # take last frame in the buffer
                #self.idx_f_ref = self.frames.index(self.f_ref)  # since we are using a deque, the code of the previous commented line is not valid anymore
                #print('*** idx_f_ref:',self.idx_f_ref)
        #self.f_ref = self.frames[self.idx_f_ref]
        f_ref = self.f_ref
        #print('ref fid: ',self.f_ref.id,', curr fid: ', f_cur.id, ', idxs_ref: ', self.idxs_ref)

        # append current frame
        self.frames.append(f_cur)

        # if the current frames do no have enough features exit
        if len(f_ref.kps) < self.num_min_features or len(
                f_cur.kps) < self.num_min_features:
            Printer.red('Inializer: ko - not enough features!')
            self.num_failures += 1
            return out, is_ok

        # find keypoint matches
        idxs_cur, idxs_ref = match_frames(f_cur, f_ref,
                                          kFeatureMatchRatioTestInitializer)

        print('|------------')
        #print('deque ids: ', [f.id for f in self.frames])
        print('initializing frames ', f_cur.id, ', ', f_ref.id)
        print("# keypoint matches: ", len(idxs_cur))

        Trc = self.estimatePose(f_ref.kpsn[idxs_ref], f_cur.kpsn[idxs_cur])
        Tcr = inv_T(Trc)  # Tcr w.r.t. ref frame
        f_ref.update_pose(np.eye(4))
        f_cur.update_pose(Tcr)

        # remove outliers from keypoint matches by using the mask computed with inter frame pose estimation
        mask_idxs = (self.mask_match.ravel() == 1)
        self.num_inliers = sum(mask_idxs)
        print('# keypoint inliers: ', self.num_inliers)
        idx_cur_inliers = idxs_cur[mask_idxs]
        idx_ref_inliers = idxs_ref[mask_idxs]

        # create a temp map for initializing
        map = Map()
        f_ref.reset_points()
        f_cur.reset_points()

        #map.add_frame(f_ref)
        #map.add_frame(f_cur)

        kf_ref = KeyFrame(f_ref)
        kf_cur = KeyFrame(f_cur, img_cur)
        map.add_keyframe(kf_ref)
        map.add_keyframe(kf_cur)

        pts3d, mask_pts3d = triangulate_normalized_points(
            kf_cur.Tcw, kf_ref.Tcw, kf_cur.kpsn[idx_cur_inliers],
            kf_ref.kpsn[idx_ref_inliers])

        new_pts_count, mask_points, _ = map.add_points(
            pts3d,
            mask_pts3d,
            kf_cur,
            kf_ref,
            idx_cur_inliers,
            idx_ref_inliers,
            img_cur,
            do_check=True,
            cos_max_parallax=Parameters.kCosMaxParallaxInitializer)
        print("# triangulated points: ", new_pts_count)

        if new_pts_count > self.num_min_triangulated_points:
            err = map.optimize(verbose=False,
                               rounds=20,
                               use_robust_kernel=True)
            print("init optimization error^2: %f" % err)

            num_map_points = len(map.points)
            print("# map points:   %d" % num_map_points)
            is_ok = num_map_points > self.num_min_triangulated_points

            out.pts = pts3d[mask_points]
            out.kf_cur = kf_cur
            out.idxs_cur = idx_cur_inliers[mask_points]
            out.kf_ref = kf_ref
            out.idxs_ref = idx_ref_inliers[mask_points]

            # set scene median depth to equal desired_median_depth'
            desired_median_depth = Parameters.kInitializerDesiredMedianDepth
            median_depth = kf_cur.compute_points_median_depth(out.pts)
            depth_scale = desired_median_depth / median_depth
            print('forcing current median depth ', median_depth, ' to ',
                  desired_median_depth)

            out.pts[:, :3] = out.pts[:, :3] * depth_scale  # scale points
            tcw = kf_cur.tcw * depth_scale  # scale initial baseline
            kf_cur.update_translation(tcw)

        map.delete()

        if is_ok:
            Printer.green('Inializer: ok!')
        else:
            self.num_failures += 1
            Printer.red('Inializer: ko!')
        print('|------------')
        return out, is_ok