Example #1
0
def main(argv=None):  # pylint: disable=unused-argument
    """Program entrance."""
    # create sift detector.
    sift_wrapper = SiftWrapper(n_sample=FLAGS.max_kpt_num)
    sift_wrapper.half_sigma = FLAGS.half_sigma
    sift_wrapper.pyr_off = FLAGS.pyr_off
    sift_wrapper.ori_off = FLAGS.ori_off
    sift_wrapper.create()
    # create deep feature extractor.
    Printer.yellow('loading model:',FLAGS.model_path,'...')
    graph = load_frozen_model(FLAGS.model_path, print_nodes=False)
    #sess = tf.Session(graph=graph)
    Printer.yellow('...done')    

    with tf.Session(graph=graph, config=config) as sess:    
        # extract deep feature from images.
        deep_feat1, cv_kpts1, img1 = extract_deep_features(
            sift_wrapper, sess, FLAGS.img1_path, qtz=False)
        deep_feat2, cv_kpts2, img2 = extract_deep_features(
            sift_wrapper, sess, FLAGS.img2_path, qtz=False)
    # match features by OpenCV brute-force matcher (CPU).
    matcher_wrapper = MatcherWrapper()
    # the ratio criterion is set to 0.89 for GeoDesc as described in the paper.
    deep_good_matches, deep_mask = matcher_wrapper.get_matches(
        deep_feat1, deep_feat2, cv_kpts1, cv_kpts2, ratio=0.89, cross_check=True, info='deep')

    deep_display = matcher_wrapper.draw_matches(
        img1, cv_kpts1, img2, cv_kpts2, deep_good_matches, deep_mask)
    # compare with SIFT.
    if FLAGS.cf_sift:
        sift_feat1 = sift_wrapper.compute(img1, cv_kpts1)
        sift_feat2 = sift_wrapper.compute(img2, cv_kpts2)
        sift_good_matches, sift_mask = matcher_wrapper.get_matches(
            sift_feat1, sift_feat2, cv_kpts1, cv_kpts2, ratio=0.80, cross_check=True, info='sift')
        sift_display = matcher_wrapper.draw_matches(
            img1, cv_kpts1, img2, cv_kpts2, sift_good_matches, sift_mask)
        display = np.concatenate((sift_display, deep_display), axis=0)
    else:
        display = deep_display

    cv2.imshow('display', display)
    cv2.waitKey()

    sess.close()
Example #2
0
    def track(self, img, frame_id, timestamp=None):
        Printer.cyan('@tracking')
        time_start = time.time()

        # check image size is coherent with camera params
        print("img.shape: ", img.shape)
        print("camera ", self.camera.height, " x ", self.camera.width)
        assert img.shape[0:2] == (self.camera.height, self.camera.width)
        if timestamp is not None:
            print('timestamp: ', timestamp)

        self.timer_main_track.start()

        # build current frame
        self.timer_frame.start()
        f_cur = Frame(img, self.camera, timestamp=timestamp)
        self.f_cur = f_cur
        print("frame: ", f_cur.id)
        self.timer_frame.refresh()

        # reset indexes of matches
        self.idxs_ref = []
        self.idxs_cur = []

        if self.state == SlamState.NO_IMAGES_YET:
            # push first frame in the inizializer
            self.intializer.init(f_cur)
            self.state = SlamState.NOT_INITIALIZED
            return  # EXIT (jump to second frame)

        if self.state == SlamState.NOT_INITIALIZED:
            # try to inizialize
            initializer_output, intializer_is_ok = self.intializer.initialize(
                f_cur, img)
            if intializer_is_ok:
                kf_ref = initializer_output.kf_ref
                kf_cur = initializer_output.kf_cur
                # add the two initialized frames in the map
                self.map.add_frame(
                    kf_ref)  # add first frame in map and update its frame id
                self.map.add_frame(
                    kf_cur)  # add second frame in map and update its frame id
                # add the two initialized frames as keyframes in the map
                self.map.add_keyframe(
                    kf_ref)  # add first keyframe in map and update its kid
                self.map.add_keyframe(
                    kf_cur)  # add second keyframe in map and update its kid
                kf_ref.init_observations()
                kf_cur.init_observations()
                # add points in map
                new_pts_count, _, _ = self.map.add_points(
                    initializer_output.pts,
                    None,
                    kf_cur,
                    kf_ref,
                    initializer_output.idxs_cur,
                    initializer_output.idxs_ref,
                    img,
                    do_check=False)
                Printer.green("map: initialized %d new points" %
                              (new_pts_count))
                # update covisibility graph connections
                kf_ref.update_connections()
                kf_cur.update_connections()

                # update tracking info
                self.f_cur = kf_cur
                self.f_cur.kf_ref = kf_ref
                self.kf_ref = kf_cur  # set reference keyframe
                self.kf_last = kf_cur  # set last added keyframe
                self.map.local_map.update(self.kf_ref)
                self.state = SlamState.OK

                self.update_tracking_history()
                self.motion_model.update_pose(kf_cur.timestamp,
                                              kf_cur.position,
                                              kf_cur.quaternion)
                self.motion_model.is_ok = False  # after initialization you cannot use motion model for next frame pose prediction (time ids of initialized poses may not be consecutive)

                self.intializer.reset()

                if kUseDynamicDesDistanceTh:
                    self.descriptor_distance_sigma = self.dyn_config.update_descriptor_stat(
                        kf_ref, kf_cur, initializer_output.idxs_ref,
                        initializer_output.idxs_cur)
            return  # EXIT (jump to next frame)

        # get previous frame in map as reference
        f_ref = self.map.get_frame(-1)
        #f_ref_2 = self.map.get_frame(-2)
        self.f_ref = f_ref

        # add current frame f_cur to map
        self.map.add_frame(f_cur)
        self.f_cur.kf_ref = self.kf_ref

        # reset pose state flag
        self.pose_is_ok = False

        with self.map.update_lock:
            # check for map point replacements in previous frame f_ref (some points might have been replaced by local mapping during point fusion)
            self.f_ref.check_replaced_map_points()

            if kUseDynamicDesDistanceTh:
                print('descriptor_distance_sigma: ',
                      self.descriptor_distance_sigma)
                self.local_mapping.descriptor_distance_sigma = self.descriptor_distance_sigma

            # udpdate (velocity) old motion model                                             # c1=ref_ref, c2=ref, c3=cur;  c=cur, r=ref
            #self.velocity = np.dot(f_ref.pose, inv_T(f_ref_2.pose))                          # Tc2c1 = Tc2w * Twc1   (predicted Tcr)
            #self.predicted_pose = g2o.Isometry3d(np.dot(self.velocity, f_ref.pose))          # Tc3w = Tc2c1 * Tc2w   (predicted Tcw)

            # set intial guess for current pose optimization
            if kUseMotionModel and self.motion_model.is_ok:
                print('using motion model for next pose prediction')
                # update f_ref pose according to its reference keyframe (the pose of the reference keyframe could be updated by local mapping)
                self.f_ref.update_pose(
                    self.tracking_history.relative_frame_poses[-1] *
                    self.f_ref.kf_ref.isometry3d)
                # predict pose by using motion model
                self.predicted_pose, _ = self.motion_model.predict_pose(
                    timestamp, self.f_ref.position, self.f_ref.orientation)
                f_cur.update_pose(self.predicted_pose)
            else:
                print('setting f_cur.pose <-- f_ref.pose')
                # use reference frame pose as initial guess
                f_cur.update_pose(f_ref.pose)

            # track camera motion from f_ref to f_cur
            self.track_previous_frame(f_ref, f_cur)

            if not self.pose_is_ok:
                # if previous track didn't go well then track the camera motion from kf_ref to f_cur
                self.track_keyframe(self.kf_ref, f_cur)

            # now, having a better estimate of f_cur pose, we can find more map point matches:
            # find matches between {local map points} (points in the local map) and {unmatched keypoints of f_cur}
            if self.pose_is_ok:
                self.track_local_map(f_cur)

        # end block {with self.map.update_lock:}

        # TODO: add relocalization

        # HACK: since local mapping is not fast enough in python (and tracking is not in real-time) => give local mapping more time to process stuff
        self.wait_for_local_mapping(
        )  # N.B.: this must be outside the `with self.map.update_lock:` block

        with self.map.update_lock:

            # update slam state
            if self.pose_is_ok:
                self.state = SlamState.OK
            else:
                self.state = SlamState.LOST
                Printer.red('tracking failure')

            # update motion model state
            self.motion_model.is_ok = self.pose_is_ok

            if self.pose_is_ok:  # if tracking was successful

                # update motion model
                self.motion_model.update_pose(timestamp, f_cur.position,
                                              f_cur.quaternion)

                f_cur.clean_vo_map_points()

                # do we need a new KeyFrame?
                need_new_kf = self.need_new_keyframe(f_cur)

                if need_new_kf:
                    Printer.green('adding new KF with frame id % d: ' %
                                  (f_cur.id))
                    if kLogKFinfoToFile:
                        self.kf_info_logger.info(
                            'adding new KF with frame id % d: ' % (f_cur.id))
                    kf_new = KeyFrame(f_cur, img)
                    self.kf_last = kf_new
                    self.kf_ref = kf_new
                    f_cur.kf_ref = kf_new

                    self.local_mapping.push_keyframe(kf_new)
                    if not kLocalMappingOnSeparateThread:
                        self.local_mapping.do_local_mapping()
                else:
                    Printer.yellow('NOT KF')

                # From ORBSLAM2:
                # Clean outliers once keyframe generation has been managed:
                # we allow points with high innovation (considered outliers by the Huber Function)
                # pass to the new keyframe, so that bundle adjustment will finally decide
                # if they are outliers or not. We don't want next frame to estimate its position
                # with those points so we discard them in the frame.
                f_cur.clean_outlier_map_points()

            if self.f_cur.kf_ref is None:
                self.f_cur.kf_ref = self.kf_ref

            self.update_tracking_history(
            )  # must stay after having updated slam state (self.state)

            Printer.green("map: %d points, %d keyframes" %
                          (self.map.num_points(), self.map.num_keyframes()))
            #self.update_history()

            self.timer_main_track.refresh()

            duration = time.time() - time_start
            print('tracking duration: ', duration)