def _singleMissingLayer(layer=30, nx=64, ny=64, nz=100, method="linear"):
    expected_output = _volume(nx=nx, ny=ny, nz=nz, method=method)
    volume = vigra.VigraArray(expected_output)
    missing = vigra.VigraArray(np.zeros(volume.shape), axistags=volume.axistags, dtype=np.uint8)
    volume[:, :, layer] = 0
    missing[:] = 0
    missing[:, :, layer] = 1
    return (volume, missing, expected_output)
    def test5D(self):
        vol = vigra.VigraArray(np.ones((50, 50, 10, 3, 7)), axistags=vigra.defaultAxistags("cxzty"))
        miss = vigra.VigraArray(vol)
        miss[:, :, 3, 2, 4] = 1
        self.op.InputVolume.setValue(vol)
        self.op.Missing.setValue(miss)

        self.op.Output[:].wait()
Example #3
0
 def testNothingToInterpolate(self):
     vol = vigra.VigraArray( np.ones((50,50,10,3,7)), axistags=vigra.defaultAxistags('cxzty') )
     miss = vigra.VigraArray(vol)*0
     
     self.op.InputVolume.setValue(vol)
     self.op.Missing.setValue(miss)
     
     
     assert_array_equal( self.op.Output[:].wait(), vol.view(np.ndarray), err_msg="interpolation where nothing had to be interpolated")
Example #4
0
    def setupOutputs(self):
        tags = vigra.defaultAxistags(outer_order)
        a = vigra.VigraArray(outer_shape, value=1, axistags=tags)
        b = vigra.VigraArray(outer_shape, value=2, axistags=tags)
        self.lazyOp1.in_a.setValue(a)
        self.lazyOp1.in_b.setValue(b)

        self.lazyOp1.setupOutputs()
        self.lazyOp2.setupOutputs()

        self.lazyOp2.in_a.connect(self.lazyOp1.out_a)
        self.lazyOp2.in_b.connect(self.lazyOp1.out_b)
Example #5
0
    def execute(self, slot, subindex, roi, result):
        roi = roi.copy()
        #request,set or compute the necessary parameters
        axistags = self.Input.meta.axistags
        inputShape = self.Input.meta.shape
        channelIndex = axistags.index('c')
        channelsPerC = self.channelsPerChannel()
        channelRes = self.getChannelResolution()
        timeIndex = axistags.index('t')
        if timeIndex >= roi.dim:
            timeIndex = None
        roi.setInputShape(inputShape)
        origRoi = roi.copy()
        sigma = self.setupFilter()
        halo = self.calculateHalo(sigma)

        #set up the roi to get the necessary source
        roi.expandByShape(halo, channelIndex,
                          timeIndex).adjustChannel(channelsPerC, channelIndex,
                                                   channelRes)
        source = self.Input(roi.start, roi.stop).wait()
        source = vigra.VigraArray(source, axistags=axistags)

        #set up the grid for the iterator, and the iterator
        srcGrid = [
            source.shape[i] if i != channelIndex else channelRes
            for i in range(len(source.shape))
        ]
        trgtGrid = [
            inputShape[i] if i != channelIndex else self.channelsPerChannel()
            for i in range(len(source.shape))
        ]
        if timeIndex is not None:
            srcGrid[timeIndex] = 1
            trgtGrid[timeIndex] = 1
        nIt = newIterator(origRoi,
                          srcGrid,
                          trgtGrid,
                          timeIndex=timeIndex,
                          channelIndex=channelIndex)

        #set up roi to work with vigra filters
        if timeIndex > channelIndex and timeIndex is not None:
            origRoi.popDim(timeIndex)
            origRoi.popDim(channelIndex)
        elif timeIndex < channelIndex and timeIndex is not None:
            origRoi.popDim(channelIndex)
            origRoi.popDim(timeIndex)
        else:
            origRoi.popDim(channelIndex)
        origRoi.adjustRoi(halo)

        #iterate over the requested volumes

        #warnings.warn("TODO: This loop could be parallelized for better performance.")
        for src, trgt, mask in nIt:
            result[trgt] = self.vigraFilter(source=source[src],
                                            window_size=self.windowSize,
                                            roi=origRoi)[mask]
        return result
def testPartialAllocate():

    nx = 15
    ny = 20
    nz = 17
    nc = 7
    stack = vigra.VigraArray((nx, ny, nz, nc),
                             axistags=vigra.defaultAxistags('xyzc'))
    stack[...] = numpy.random.rand(nx, ny, nz, nc)

    g = Graph()

    #assume that the slicer works
    slicerX = OpMultiArraySlicer_REDUCE_DIM(graph=g)
    slicerX.inputs["Input"].setValue(stack)
    slicerX.inputs["AxisFlag"].setValue('x')

    #insert the x dimension
    stackerX = OpMultiArrayStacker(graph=g)
    stackerX.inputs["AxisFlag"].setValue('x')
    stackerX.inputs["AxisIndex"].setValue(0)
    stackerX.inputs["Images"].connect(slicerX.outputs["Slices"])

    key = (slice(2, 3, None), slice(15, 18,
                                    None), slice(12, 15,
                                                 None), slice(0, 7, None))
    newdata = stackerX.outputs["Output"][key].wait()
    substack = stack[key]
    print(newdata.shape, substack.shape)
    assert_array_equal(newdata, substack.view(numpy.ndarray))
Example #7
0
    def setup(self):
        graph = Graph()
        try:
            import blist
        except ImportError:
            raise unittest.SkipTest

        from lazyflow.operators.opBlockedSparseLabelArray import OpBlockedSparseLabelArray
        op = OpBlockedSparseLabelArray(graph=graph)
        arrayshape = (1,100,100,10,1)
        op.inputs["shape"].setValue( arrayshape )
        blockshape = (1,10,10,10,1) # Why doesn't this work if blockshape is an ndarray?
        op.inputs["blockShape"].setValue( blockshape )
        op.eraser.setValue(100)

        dummyData = vigra.VigraArray(arrayshape, axistags=vigra.defaultAxistags('txyzc'))
        op.Input.setValue( dummyData )

        slicing = sl[0:1, 1:15, 2:36, 3:7, 0:1]
        inDataShape = slicing2shape(slicing)
        inputData = ( 3*numpy.random.random(inDataShape) ).astype(numpy.uint8)
        op.Input[slicing] = inputData
        data = numpy.zeros(arrayshape, dtype=numpy.uint8)
        data[slicing] = inputData
        
        self.op = op
        self.slicing = slicing
        self.inData = inputData
        self.data = data
Example #8
0
def node_locations_to_array(arr_shape, node_locations):
    """
    Given a vigra image in xy and a dict containing xy coordinates, return a vigra image of the same shape, where nodes
    are represented by their integer ID, and every other pixel is -1.

    Parameters
    ----------
    arr_shape : tuple

    node_locations : dict
        dict whose values are a dicts containing a 'coords' dict (relative within this image) and a 'treenode_id' value

    Returns
    -------
    vigra.VigraArray
    """
    arr_xy = vigra.VigraArray(arr_shape,
                              dtype=np.int64,
                              value=-1,
                              axistags=vigra.AxisTags('xy'))

    for node_location in node_locations.values():
        coords = node_location['coords']
        arr_xy[coords['x'], coords['y']] = int(node_location['treenode_id'])

    return arr_xy
    def setup(self):
        graph = Graph()
        op = OpCompressedUserLabelArray(graph=graph)
        arrayshape = (1, 100, 100, 10, 1)
        op.inputs["shape"].setValue(arrayshape)
        blockshape = (1, 10, 10, 10, 1
                      )  # Why doesn't this work if blockshape is an ndarray?
        op.inputs["blockShape"].setValue(blockshape)
        op.eraser.setValue(100)

        dummyData = vigra.VigraArray(arrayshape,
                                     axistags=vigra.defaultAxistags("txyzc"),
                                     dtype=numpy.uint8)
        op.Input.setValue(dummyData)

        slicing = numpy.s_[0:1, 1:15, 2:36, 3:7, 0:1]
        inDataShape = slicing2shape(slicing)
        inputData = (3 * numpy.random.random(inDataShape)).astype(numpy.uint8)
        op.Input[slicing] = inputData

        data = numpy.zeros(arrayshape, dtype=numpy.uint8)
        data[slicing] = inputData

        # Sanity check...
        assert (op.Output[:].wait()[slicing] == data[slicing]).all()

        self.op = op
        self.slicing = slicing
        self.inData = inputData
        self.data = data
Example #10
0
    def prepareVolnOp(self,
                      possible_axes="tzyxc",
                      num=5,
                      AxisOrder=None,
                      config_via_init=False):
        tagStr = "".join(random.sample(possible_axes, random.randint(2, num)))
        axisTags = vigra.defaultAxistags(tagStr)

        self.shape = [random.randint(20, 30) for tag in axisTags]

        self.array = numpy.random.rand(*self.shape) * 255
        self.array = (float(250) / 255 * self.array + 5).astype(int)
        self.inArray = vigra.VigraArray(self.array, axistags=axisTags)

        opProvider = OpArrayProvider(graph=self.graph)
        opProvider.Input.setValue(self.inArray)

        if config_via_init:
            self.operator = OpReorderAxes(graph=self.graph,
                                          Input=opProvider.Output,
                                          AxisOrder=AxisOrder)
        else:
            self.operator.Input.connect(opProvider.Output)
            if AxisOrder is not None:
                self.operator.AxisOrder.setValue(AxisOrder)
Example #11
0
 def setup_method(self, method):
     self.testVol = vigra.VigraArray((200, 200, 200))
     self.testVol[:] = numpy.random.rand(200, 200, 200)
     self.graph = Graph()
     self.op = OpArrayPiper(graph=self.graph)
     self.op.inputs["Input"].setValue(self.testVol)
     self.roiOp = OpRoiTest(graph=self.graph)
     self.roiOp.inputs["input"].setValue(self.testVol)
Example #12
0
 def visualTest(self, operator):
     if GENERATE_VISUAL_DEBUG_IMAGES:
         start, stop = [200, 200, 0], [400, 400, 1]
         testArray = vigra.VigraArray((400, 400, 3))
         roiResult = vigra.VigraArray(
             tuple([sto - sta for sta, sto in zip(start, stop)]))
         testArray[100:300, 100:300, 0] = 1
         testArray[200:300, 200:300, 1] = 1
         testArray[100:200, 100:200, 2] = 1
         operator.inputs["Input"].setValue(testArray)
         wholeResult = operator.outputs["Output"]().wait()
         wholeResult = wholeResult[:, :, 0:3]
         roiResult[:, :, 0:1] = operator.outputs["Output"](start,
                                                           stop).wait()
         vigra.impex.writeImage(testArray, operator.name + 'before.png')
         vigra.impex.writeImage(wholeResult,
                                operator.name + 'afterWhole.png')
         vigra.impex.writeImage(roiResult, operator.name + 'afterRoi.png')
Example #13
0
    def setUp(self):
        self.graph = lazyflow.graph.Graph()
        self.testDataFileName = 'bigH5TestData.h5'
        self.datasetInternalPath = 'volume/data'
 
        # Generate some test data
        self.dataShape = (1, 10, 128, 128, 1)
        self.testData = vigra.VigraArray( self.dataShape, axistags=vigra.defaultAxistags('txyzc') ) # default vigra order this time...
        self.testData[...] = numpy.indices(self.dataShape).sum(0)
Example #14
0
    def testIntegerRange(self):
        '''
        test if the output is in the right integer range
        in particular, too large values should be set to max and too small 
        values to min
        '''
        v = np.zeros((1, 1, 5), dtype=np.uint8)
        v[0, 0, :] = [220, 255, 0, 255, 220]
        v = vigra.VigraArray(v,
                             axistags=vigra.defaultAxistags('xyz'),
                             dtype=np.uint8)
        m = vigra.VigraArray(v,
                             axistags=vigra.defaultAxistags('xyz'),
                             dtype=np.uint8)
        m[:] = 0
        m[0, 0, 2] = 1

        for interpolationMethod in ['cubic']:
            self.op.InputVolume.setValue(v)
            self.op.Missing.setValue(m)
            self.op.InterpolationMethod.setValue(interpolationMethod)
            self.op.InputVolume.setValue(v)
            out = self.op.Output[:].wait().view(np.ndarray)
            # natural comparison
            self.assertEqual(out[0, 0, 2], 255)

        v = np.zeros((1, 1, 5), dtype=np.uint8)
        v[0, 0, :] = [220, 255, 0, 255, 220]
        v = 255 - vigra.VigraArray(
            v, axistags=vigra.defaultAxistags('xyz'), dtype=np.uint8)
        m = vigra.VigraArray(v,
                             axistags=vigra.defaultAxistags('xyz'),
                             dtype=np.uint8)
        m[:] = 0
        m[0, 0, 2] = 1

        for interpolationMethod in ['cubic']:
            self.op.InputVolume.setValue(v)
            self.op.Missing.setValue(m)
            self.op.InterpolationMethod.setValue(interpolationMethod)
            self.op.InputVolume.setValue(v)
            out = self.op.Output[:].wait().view(np.ndarray)
            # natural comparison
            self.assertEqual(out[0, 0, 2], 0)
def test_OpMaxChannelIndicatorOperator_unexpected_roi_raises(graph):
    data = vigra.VigraArray(numpy.zeros((1, 3, 5, 7, 2)),
                            axistags=vigra.defaultAxistags("tzyxc"))

    with pytest.raises(InvalidRoiException):
        # automatically connects op1.Output to op2.Input ...
        with Pipeline(graph=graph) as pipe_line:
            pipe_line.add(OpArrayPiper, Input=data)
            pipe_line.add(OpMaxChannelIndicatorOperator)
            pipe_line[-1].Output[()].wait()
Example #16
0
    def setup_method(self, method):
        self.graph = lazyflow.graph.Graph()
        self.testDataH5FileName = "bigH5TestData.h5"
        self.testDataN5FileName = "bigN5TestData.n5"
        self.datasetInternalPath = "volume/data"

        # Generate some test data
        self.dataShape = (1, 10, 128, 128, 1)
        self.testData = vigra.VigraArray(
            self.dataShape, axistags=vigra.defaultAxistags("txyzc"), order="C")
        self.testData[...] = numpy.indices(self.dataShape).sum(0)
Example #17
0
    def setUp(self):
        self.graph = lazyflow.graph.Graph()
        self._tmpdir = tempfile.mkdtemp()

        # Generate some test data
        self.dataShape = (1, 10, 64, 128, 2)
        self._axisorder = 'tzyxc'
        self.testData = vigra.VigraArray( self.dataShape,
                                         axistags=vigra.defaultAxistags(self._axisorder),
                                         order='C' ).astype(numpy.uint8)
        self.testData[...] = numpy.indices(self.dataShape).sum(0)
def test_OpMaxChannelIndicatorOperator_all_zeros(graph):
    """Special case for all zeros in probability maps"""
    data = vigra.VigraArray(numpy.zeros((1, 3, 5, 7, 2)),
                            axistags=vigra.defaultAxistags("tzyxc"))

    # automatically connects op1.Output to op2.Input ...
    with Pipeline(graph=graph) as pipe_line:
        pipe_line.add(OpArrayPiper, Input=data)
        pipe_line.add(OpMaxChannelIndicatorOperator)

        for c in range(data.channels):
            assert not numpy.any(pipe_line[-1].Output[..., c].wait())
Example #19
0
def _volume(nx=64,ny=64,nz=100,method='linear'):
    b = vigra.VigraArray( np.ones((nx,ny,nz)), axistags=vigra.defaultAxistags('xyz') )
    if method == 'linear':
        for i in range(b.shape[2]): b[:,:,i]*=(i+1)+50
    elif method == 'cubic':
        s = nz//3
        for z in range(b.shape[2]): b[:,:,z]= (z-s)**2*z*150.0/(nz*(nz-s)**2) + 30
    elif method == 'constant':
        b[:] = 124
    else:
        raise NotImplementedError("unknown method '{}'.".format(method))
    
    return b
Example #20
0
 def generalOperatorTest(self, operator):
     for dim in self.testDimensions:
         testArray = vigra.VigraArray(
             (20, ) * len(dim),
             axistags=vigra.VigraArray.defaultAxistags(dim))
         testArray[(slice(2, 5, None), ) * len(dim)] = 10
         operator.inputs["Input"].setValue(testArray)
         for i, j in [(i, j)
                      for i, j in itertools.permutations(range(0, 10), 2)
                      if i < j]:
             start = [i] * len(dim)
             stop = [j] * len(dim)
             operator.outputs["Output"](start, stop).wait()
Example #21
0
    def test_reorderd_ops_in_parent_op(self):
        opParent = OpParent(graph=Graph())
        opParent.setupOutputs()
        # check that method types are treated correctly (actual tests in LazyOp)
        opParent.lazyOp1.meth(*test_args)
        opParent.lazyOp1.class_meth(*test_args)
        opParent.lazyOp1.static_meth(*test_args)
        opParent.lazyOp1.property_meth
        opParent.lazyOp1.except_meth(*test_args)

        # when accessing the child's operators they should conform with the outside order. Here, the shape of the
        # resulting numpy.ndarray is tested to make sure we are not just checking meta data.
        assert opParent.lazyOp1.out_a[:].wait().shape == outer_shape
        assert opParent.lazyOp1.out_b[:].wait().shape == outer_shape

        tags = vigra.defaultAxistags(outer_order)
        expect = vigra.VigraArray(outer_shape, value=3, axistags=tags)

        assert (expect == opParent.lazyOp1.out_b[:].wait()).all()
        assert expect.axistags == opParent.lazyOp1.out_b.meta.axistags
        assert expect.shape == opParent.lazyOp1.out_b.meta.shape

        assert opParent.lazyOp2.in_a[:].wait().shape == outer_shape
        assert opParent.lazyOp2.in_b[:].wait().shape == outer_shape
        assert opParent.lazyOp2.out_a[:].wait().shape == outer_shape
        assert opParent.lazyOp2.out_b[:].wait().shape == outer_shape

        tags = vigra.defaultAxistags(outer_order)
        expect = vigra.VigraArray(outer_shape, value=4, axistags=tags)
        assert (expect == opParent.lazyOp2.out_b[:].wait()).all()
        assert expect.axistags == opParent.lazyOp2.out_b.meta.axistags
        assert expect.shape == opParent.lazyOp2.out_b.meta.shape

        # checking inner shapes by pretending to make inner calls
        opParent.lazyOp2._inner_call = True
        assert opParent.lazyOp2.in_a[:].wait().shape == inner_shape
        assert opParent.lazyOp2.in_b[:].wait().shape == inner_shape
        assert opParent.lazyOp2.out_a[:].wait().shape == inner_shape
        assert opParent.lazyOp2.out_b[:].wait().shape == inner_shape
Example #22
0
    def setUp(self):
        self.graph = lazyflow.graph.Graph()
        self._tmpdir = tempfile.mkdtemp()
        self._name_pattern = 'test_stack_slice_{slice_index}.png'
        self._stack_filepattern = os.path.join( self._tmpdir, self._name_pattern )

        # Generate some test data
        self.dataShape = (1, 10, 64, 128, 2)
        self._axisorder = 'tzyxc'
        self.testData = vigra.VigraArray( self.dataShape,
                                         axistags=vigra.defaultAxistags(self._axisorder),
                                         order='C' ).astype(numpy.uint8)
        self.testData[...] = numpy.indices(self.dataShape).sum(0)
Example #23
0
    def setupClass(cls):
        cls.tmpdir = tempfile.mkdtemp()
        cls.imgFileNames2D = []
        cls.imgFileNames2Dc = []
        # Comparison of compressed data not possible - those types will be
        # skipped in raw comparison:
        cls.compressedExtensions = ['.jpg', '.jpeg']
        cls.projectFileName = os.path.join(cls.tmpdir, 'testProject.ilp')

        # Create a couple test images of different types
        # in order to simplify and unify testing among the different file types
        # the extra dimension is added, as vigra would add one anyway.
        cls.imgData2D = numpy.random.randint(0, 255,
                                             (10, 11, 1)).astype(numpy.uint8)
        # v- image data variables in order to reflect the correct axis-order
        # otherwise the axes get scrambled when writing/reloading
        vimgData2D = vigra.VigraArray(cls.imgData2D,
                                      axistags=vigra.defaultAxistags('yxc'),
                                      dtype=numpy.uint8)

        testNpyFileName = os.path.join(cls.tmpdir, "testimage2D.npy")
        numpy.save(testNpyFileName, cls.imgData2D)
        cls.imgFileNames2D.append(testNpyFileName)

        testNpzFileName = os.path.join(cls.tmpdir, "testimage2D.npz")
        numpy.savez(testNpzFileName, data=cls.imgData2D)
        testNpzFileName = "{}/data".format(testNpzFileName)
        cls.imgFileNames2D.append(testNpzFileName)

        testH5FileName = os.path.join(cls.tmpdir, "testimage2D.h5")
        vigra.impex.writeHDF5(data=cls.imgData2D,
                              filenameOrGroup=testH5FileName,
                              pathInFile='test/data')
        testH5FileName = "{}/test/data".format(testH5FileName)
        cls.imgFileNames2D.append(testH5FileName)

        for extension in vigra.impex.listExtensions().split(' '):
            tmpFileName = os.path.join(cls.tmpdir,
                                       "testImage2D.{}".format(extension))
            # not all extensions support this kind of pixeltype
            try:
                vigra.impex.writeImage(
                    vimgData2D,
                    tmpFileName,
                )
                cls.imgFileNames2D.append(tmpFileName)
            except RuntimeError, e:
                msg = str(e).replace('\n', '')
                print(
                    "Couldn't write temp 2D image file using vigra with `{}` "
                    "extension : {}".format(extension, msg))
Example #24
0
def reorder_axes(input_arr: numpy.ndarray, *, from_axes_tags: str, to_axes_tags: str):
    if isinstance(from_axes_tags, AxisTags):
        from_axes_tags = "".join(from_axes_tags.keys())

    if isinstance(to_axes_tags, AxisTags):
        to_axes_tags = "".join(to_axes_tags.keys())

    op = OpReorderAxes(graph=Graph())

    tagged_arr = vigra.VigraArray(input_arr, axistags=vigra.defaultAxistags(from_axes_tags))
    op.Input.setValue(tagged_arr)
    op.AxisOrder.setValue(to_axes_tags)

    return op.Output([]).wait()
Example #25
0
def get_result_operator(input_data):
    """
    Returns the result of the wrapping operator pipeline, which gets
    accessed via the GUI.
    """

    input_data = vigra.VigraArray(input_data, axistags=vigra.defaultAxistags(AXIS_TAGS))

    graph = Graph()
    with Pipeline(graph=graph) as get_wsdt:
        get_wsdt.add(OpArrayPiper, Input=input_data)
        get_wsdt.add(OpCachedWsdt, FreezeCache=False)
        wsdt_result = get_wsdt[-1].outputs["Superpixels"][:].wait()

    return wsdt_result
Example #26
0
        def prepareVolnOp(self):
            tags = random.sample(self.axis, random.randint(2, len(self.axis)))
            tagStr = ''
            for s in tags:
                tagStr += s
            axisTags = vigra.defaultAxistags(tagStr)

            self.shape = []
            for tag in axisTags:
                self.shape.append(random.randint(20, 30))

            self.array = (numpy.random.rand(*tuple(self.shape)) * 255)
            self.array = (float(250) / 255 * self.array + 5).astype(int)
            self.inArray = vigra.VigraArray(self.array, axistags=axisTags)
            self.operator.inputs["input"].setValue(self.inArray)
def test_OpMaxChannelIndicatorOperator(graph):
    data = vigra.VigraArray(numpy.zeros((1, 3, 5, 7, 2)),
                            axistags=vigra.defaultAxistags("tzyxc"))

    data[:, :, :, ::2, 0] = 1
    data[:, :, :, 1::2, 1] = 1

    expected = data == 1

    # automatically connects op1.Output to op2.Input ...
    with Pipeline(graph=graph) as pipe_line:
        pipe_line.add(OpArrayPiper, Input=data)
        pipe_line.add(OpMaxChannelIndicatorOperator)

        for c in range(data.channels):
            numpy.testing.assert_array_equal(
                pipe_line[-1].Output[..., c].wait(), expected[..., c, None])
    def prepareVolnOp(self, possible_axes='tzyxc', num=5):
        tags = random.sample(possible_axes, random.randint(2, num))
        tagStr = ''
        for s in tags:
            tagStr += s
        axisTags = vigra.defaultAxistags(tagStr)

        self.shape = []
        for tag in axisTags:
            self.shape.append(random.randint(20, 30))

        self.array = (numpy.random.rand(*tuple(self.shape)) * 255)
        self.array = (float(250) / 255 * self.array + 5).astype(int)
        self.inArray = vigra.VigraArray(self.array, axistags=axisTags)

        opProvider = OpArrayProvider(graph=self.operator.graph)
        opProvider.Input.setValue(self.inArray)
        self.operator.Input.connect(opProvider.Output)
Example #29
0
    def extend_data_tzyxc(self, data_nr=None):
        """Extends the dimension of the dataset and its labels to tzyxc.

        If data_nr is None, all datasets are extended.
        :param data_nr: number of dataset
        """
        if data_nr is None:
            for i in range(self.data_count):
                self.extend_data_tzyxc(i)
        else:
            # Reshape the data with the correct axistags.
            data = self.get_data(data_nr)
            axisorder = self.get_axisorder(data_nr)
            if not hasattr(data, "axistags"):
                data = vigra.VigraArray(
                    data,
                    axistags=vigra.defaultAxistags(axisorder),
                    dtype=data.dtype)
            new_data = reshape_tzyxc(data)

            # Save the reshaped dataset.
            output_folder, output_filename = os.path.split(
                self.get_cache_data_path(data_nr))
            output_path = os.path.join(
                output_folder,
                str(data_nr).zfill(4) + "_" + output_filename)
            if self.is_internal(data_nr):
                output_key = self.get_dataset_id(data_nr)
            else:
                output_key = self.get_data_key(data_nr)
            vigra.writeHDF5(new_data,
                            output_path,
                            output_key,
                            compression=self._compression)

            # Update the project file.
            self.set_data_path_key(data_nr, output_path, output_key)
            self._set_internal(data_nr, False)
            self.set_axisorder(data_nr, "tzyxc")
            self._set_axistags_from_data(data_nr)

            # If the dataset has labels, reshape them.
            if self._label_block_count(data_nr) > 0:
                self._reshape_labels(data_nr, axisorder, "tzyxc")
def test_OpMaxChannelIndicatorOperator_tied_pixels(graph):
    data = vigra.VigraArray(numpy.zeros((1, 3, 5, 7, 2)),
                            axistags=vigra.defaultAxistags("tzyxc"))

    data[..., 0] = 1
    data[:, :, 0:2, 0:2, :] = 0.5

    # for tied pixels we expect the first occurrence to "win"
    expected = numpy.zeros_like(data)
    expected[..., 0] = 1

    # automatically connects op1.Output to op2.Input ...
    with Pipeline(graph=graph) as pipe_line:
        pipe_line.add(OpArrayPiper, Input=data)
        pipe_line.add(OpMaxChannelIndicatorOperator)

        for c in range(data.channels):
            numpy.testing.assert_array_equal(
                pipe_line[-1].Output[..., c].wait(), expected[..., c, None])