Example #1
0
def pressure_rh(d):
    h_agl_staggered = (d.PHB + d.PH)/wrf.G0
    h = bn.move_mean(h_agl_staggered.values, 2, axis=0)[1:]
    t = d['T'].values
    p = (d.P + d.PB).values
    q = d.QVAPOR.values
    return (wrf.slp(h, p, t, q) * 1e-2, wrf.rh(p[0], t[0], q[0]))
Example #2
0
def main(config_path):
    config = {}
    with open(config_path) as f_config:
        config = json.load(f_config)


#    out, times, h_agl = xr.Dataset(), [], []
    for f_path in sorted(
            g.glob(os.path.join(config['output-wrf-raw'], 'wrfout_*'))):
        print(f_path)
        f_basename = os.path.basename(f_path)
        domain = f_basename.split('_')[1]
        d = xr.open_dataset(f_path).isel(Time=0)
        time = dt.datetime.strptime(
            f_basename, 'wrfout_{}_%Y-%m-%d_%H:%M:%S'.format(domain))
        h_agl_staggered = (d.PHB + d.PH) / wrf.G0
        h_agl = bn.move_mean(
            h_agl_staggered.mean(dim='south_north').mean(dim='west_east'),
            2)[1:]
        h = bn.move_mean(h_agl_staggered.values, 2, axis=0)[1:]
        t = d['T'].values
        p = (d.P + d.PB).values
        q = d.QVAPOR.values

        out = xr.Dataset()
        out.coords['time'] = time
        #        out.coords['h_agl'] = np.mean(h_agl, axis=0)
        out.coords['lat'] = d.XLAT.values[:, 0]
        out.coords['lon'] = d.XLONG.values[0, :]
        out['terrain'] = (('lat', 'lon'), d.HGT.values)
        out['u10'] = (('lat', 'lon'), d.U10.values)
        out['v10'] = (('lat', 'lon'), d.V10.values)
        out['rain'] = (('lat', 'lon'), d.RAINC + d.RAINNC)
        out['t2'] = (('lat', 'lon'), d.T2.values)
        out['so2_concentration'] = (('h_agl', 'lat', 'lon'), d.so2.values)
        out['o3_concentration'] = (('h_agl', 'lat', 'lon'), d.o3.values)
        out['nox_concentration'] = (('h_agl', 'lat', 'lon'),
                                    (d.no2 + d.no).values)
        out['pm25'] = (('h_agl', 'lat', 'lon'), d.PM2_5_DRY.values)
        out['pm10'] = (('h_agl', 'lat', 'lon'), d.PM10.values)
        #            wrf.x_to_yOm3(d.so2.values, (d.PB + d.P).values,
        #                          d['T'].values, mm=64)
        #        )
        out['p_sl'] = (('lat', 'lon'), wrf.slp(h, p, t, q))
        out['rh'] = (('lat', 'lon'), wrf.rh(p, t, q)[0])
        out.to_netcdf(
            os.path.join(
                config['output-wrf'], '{domain}_{date}.nc'.format(
                    domain=domain, date=(time.strftime('%Y%m%d%H%M')))))
Example #3
0
        File = SaveDir + T_Filename.replace(Vars[0], FinVar) + '_copy'
        if os.path.exists(File_fin) == 0:
            if not os.path.exists(SaveDir):
                os.makedirs(SaveDir)
#             print( '    '+File_fin)
            ncid = Dataset(T_file, mode='r')
            rgrT = np.squeeze(ncid.variables[Vars[0]][:])
            time_act = np.squeeze(ncid.variables['time'][:])
            ncid.close()
            ncid = Dataset(Q_file, mode='r')
            rgrQ = np.squeeze(ncid.variables[Vars[1]][:])
            ncid.close()

            rgrP = np.copy(rgrQ)
            rgrP[:] = 50000.
            RH_vals = wrf.rh(rgrQ, rgrP, rgrT, meta=False)

            # ________________________________________________________________________
            # write the netcdf
            #             print( '        ----------------------')
            #             print( '        Save data to '+File_fin)
            root_grp = Dataset(File, 'w', format='NETCDF4')
            # dimensions
            root_grp.createDimension('time', None)
            root_grp.createDimension('rlon', rgrLon.shape[0])
            root_grp.createDimension('rlat', rgrLat.shape[0])
            # variables
            lat = root_grp.createVariable('lat', 'f4', ('rlat', ))
            lon = root_grp.createVariable('lon', 'f4', ('rlon', ))
            time = root_grp.createVariable('time', 'f8', ('time', ))
            RH = root_grp.createVariable(FinVar,
def main(config_path):
    config = {}
    with open(config_path) as f_config:
        config = json.load(f_config)

    #    out, times, h_agl = xr.Dataset(), [], []
    for i, f_path in enumerate(
            sorted(g.glob(os.path.join(config['output-wrf-raw'],
                                       'wrfout_*')))):
        print(f_path)
        f_basename = os.path.basename(f_path)
        domain = f_basename.split('_')[1]
        d = xr.open_dataset(f_path).isel(Time=0)
        time = dt.datetime.strptime(
            f_basename, 'wrfout_{}_%Y-%m-%d_%H:%M:%S'.format(domain))
        h_agl_staggered = (d.PHB + d.PH) / wrf.G0
        h_agl = bn.move_mean(
            h_agl_staggered.mean(dim='south_north').mean(dim='west_east'),
            2)[1:]
        h = bn.move_mean(h_agl_staggered.values, 2, axis=0)[1:]
        t = d['T'].values
        p = (d.P + d.PB).values
        q = d.QVAPOR.values
        #cosalpha and sinalpha to account for earth's rotation relative to the grid
        cosa = d.COSALPHA.values
        sina = d.SINALPHA.values

        out = xr.Dataset()
        out.coords['time'] = time
        ##        out.coords['h_agl'] = np.mean(h_agl, axis=0)
        out.coords['x'] = range(d.XLONG.shape[1])
        out.coords['y'] = range(d.XLAT.shape[0])
        out['lat'] = (('y', 'x'), d.XLAT.values[:])
        out['lon'] = (('y', 'x'), d.XLONG.values[:])
        out['terrain'] = (('y', 'x'), d.HGT.values)
        out['u10'] = (('y', 'x'), d.U10.values * cosa - d.V10.values * sina)
        out['v10'] = (('y', 'x'), d.V10.values * cosa + d.U10.values * sina)
        out['rain'] = (('y', 'x'), d.RAINC + d.RAINNC)
        out['snow'] = (('y', 'x'), d.SNOWNC)
        out['t2'] = (('y', 'x'), d.T2.values)
        out['so2_concentration'] = (('h_agl', 'y', 'x'), d.so2.values)
        out['o3_concentration'] = (('h_agl', 'y', 'x'), d.o3.values)
        out['nox_concentration'] = (('h_agl', 'y', 'x'), (d.no2 + d.no).values)
        # This was changed today to dimish pm2.5 by a factor of 4
        wind10 = xu.sqrt(d.U10.values**2 + d.V10.values**2)
        divfac = (wind10 / 5).clip(1, 20)
        #.clip(1,10)
        #cappedpm25=d.PM2_5_DRY.values/divfac
        #out['pm25'] = (('h_agl', 'y', 'x'), cappedpm25)
        #newpm10=d.PM10.values-d.PM2_5_DRY.values+cappedpm25
        shp = d.so2.shape
        #print(shp)
        ss_01 = (d.na_a01 + d.cl_a01).values
        ss_02 = (d.na_a02 + d.cl_a02).values
        ss_03 = (d.na_a03 + d.cl_a03).values
        ss_04 = (d.na_a04 + d.cl_a04).values
        ss_05 = (d.na_a05 + d.cl_a05).values
        ss_06 = (d.na_a06 + d.cl_a06).values
        ss_25 = ss_01 + ss_02 + ss_03 + ss_04 + ss_05 + ss_06
        ss_new = ss_25 / divfac
        cappedpm25 = d.PM2_5_DRY.values - ss_25 + ss_new
        out['pm25'] = (('h_agl', 'y', 'x'), cappedpm25)
        newpm10 = d.PM10.values - d.PM2_5_DRY.values + cappedpm25
        out['pm10'] = (('h_agl', 'y', 'x'), newpm10)
        #out['ss_25'] = (('h_agl', 'y', 'x'), ss_25)
        #out['newss'] = (('h_agl', 'y', 'x'), ss_new)
        #out['ss_25'] = (('h_agl', 'y', 'x'), ss_25)
        #out['wind10'] = (('y', 'x'), wind10)
        #out['divfac']=(('y', 'x'), divfac)
        #organics
        org_01 = d.oc_a01.values
        org_02 = d.oc_a02.values
        org_03 = d.oc_a03.values
        org_04 = d.oc_a04.values
        org_05 = d.oc_a05.values
        org_06 = d.oc_a06.values
        org_07 = d.oc_a07.values
        org_08 = d.oc_a08.values
        org25 = org_01 + org_02 + org_03 + org_04 + org_05 + org_06 + org_07 + org_08
        out['org25'] = (('h_agl', 'y', 'x'), org25)
        #sulphate
        sulf_01 = d.so4_a01.values
        sulf_02 = d.so4_a02.values
        sulf_03 = d.so4_a03.values
        sulf_04 = d.so4_a04.values
        sulf_05 = d.so4_a05.values
        sulf_06 = d.so4_a06.values
        sulf_07 = d.so4_a07.values
        sulf_08 = d.so4_a08.values
        sulf25 = sulf_01 + sulf_02 + sulf_03 + sulf_04 + sulf_05 + sulf_06 + sulf_07 + sulf_08
        out['sulf25'] = (('h_agl', 'y', 'x'), sulf25)
        #nitrate
        nitr_01 = d.no3_a01.values
        nitr_02 = d.no3_a02.values
        nitr_03 = d.no3_a03.values
        nitr_04 = d.no3_a04.values
        nitr_05 = d.no3_a05.values
        nitr_06 = d.no3_a06.values
        nitr_07 = d.no3_a07.values
        nitr_08 = d.no3_a08.values
        nitr25 = nitr_01 + nitr_02 + nitr_03 + nitr_04 + nitr_05 + nitr_06 + nitr_07 + nitr_08
        out['nitr25'] = (('h_agl', 'y', 'x'), nitr25)
        #Ammonium
        nh4_01 = d.nh4_a01.values
        nh4_02 = d.nh4_a02.values
        nh4_03 = d.nh4_a03.values
        nh4_04 = d.nh4_a04.values
        nh4_05 = d.nh4_a05.values
        nh4_06 = d.nh4_a06.values
        nh4_07 = d.nh4_a07.values
        nh4_08 = d.nh4_a08.values
        nh425 = nh4_01 + nh4_02 + nh4_03 + nh4_04 + nh4_05 + nh4_06 + nh4_07 + nh4_08
        out['nh425'] = (('h_agl', 'y', 'x'), nh425)
        #Chloride
        cl_01 = d.cl_a01.values
        cl_02 = d.cl_a02.values
        cl_03 = d.cl_a03.values
        cl_04 = d.cl_a04.values
        cl_05 = d.cl_a05.values
        cl_06 = d.cl_a06.values
        cl_07 = d.cl_a07.values
        cl_08 = d.cl_a08.values
        #24/2/20:LC: have just pm2.5, so up to 6th bin
        cl25 = cl_01 + cl_02 + cl_03 + cl_04 + cl_05 + cl_06
        out['cl25'] = (('h_agl', 'y', 'x'), cl25)
        #Black Carbon
        bc_01 = d.bc_a01.values
        bc_02 = d.bc_a02.values
        bc_03 = d.bc_a03.values
        bc_04 = d.bc_a04.values
        bc_05 = d.bc_a05.values
        bc_06 = d.bc_a06.values
        bc_07 = d.bc_a07.values
        bc_08 = d.bc_a08.values
        bc = bc_01 + bc_02 + bc_03 + bc_04 + bc_05 + bc_06 + bc_07 + bc_08
        out['bc'] = (('h_agl', 'y', 'x'), bc)
        #print(d.PM2_5_DRY[1:10], d.PM10[1:10])
        #aaa=np.subtract(d.PM10.values, d.PM2_5_DRY.values)
        #out['aaa']=(('h_agl', 'y', 'x'), d.PM10[:,:,:]-d.PM2_5_DRY[:,:,:])
        #pm25=d.PM2_5_DRY.values
        #newpm25=pm25/4.
        #pm10=d.PM10.values
        #print(pm25[0:10,0:10,0:10])
        #print(pm10[0:10,0:10,0:10])
        #np.warnings.filterwarnings('ignore')
        #newpm10=(pm10-pm25+pm25/4.)
        #print(pm25.shape)
        #out['pm25'] = (
        #('h_agl', 'y', 'x'),d.PM2_5_DRY.values)
        #out['pm10'] = (('h_agl', 'y', 'x'), (d.PM10-d.PM2_5_DRY).values+d.PM2_5_DRY.values/4)
        #out['pm10'] = (('h_agl', 'y', 'x'), d.PM10.values)

        #('h_agl', 'y', 'x'), (d.PM10.values-d.PM2_5_DRY.values/4.))
        #-d.PM2_5_DRY).values)
        ##            wrf.x_to_yOm3(d.so2.values, (d.PB + d.P).values,
        ##                          d['T'].values, mm=64)
        ##        )
        out['pb'] = (('h_agl', 'y', 'x'), d.PB.values)
        out['p_sl'] = (('y', 'x'), wrf.slp(h, p, t, q))
        out['rh'] = (('y', 'x'), wrf.rh(p, t, q)[0])
        out['swdown'] = (('y', 'x'), d.SWDOWN.values)
        out['cldfra'] = (('h_agl', 'y', 'x'), d.CLDFRA.values)
        out['qsnow'] = (('h_agl', 'y', 'x'), d.QSNOW.values)
        out['qgraup'] = (('h_agl', 'y', 'x'), d.QGRAUP.values)
        out.to_netcdf(
            os.path.join(
                config['output-wrf'], '{domain}_{date}.nc'.format(
                    domain=domain, date=(time.strftime('%Y%m%d%H%M')))))
Example #5
0
def main(config_path):
    config = {}
    with open(config_path) as f_config:
        config = json.load(f_config)


#    out, times, h_agl = xr.Dataset(), [], []
#for f_path in sorted(g.glob(os.path.join(
#config['output-wrf-raw'], 'wrfout_*'
#))):
#dir_data=('/mnt/raid/rong-ming/wrfchem/data_in')
#dir_out=('/mnt/raid/rong-ming/wrfchem/data_in_dfiles')
#no_files=len(os.listdir(dir_data))
    for i, f_path in enumerate(
            sorted(g.glob(os.path.join(config['output-wrf-raw'],
                                       'wrfout_*')))):
        print(f_path)
        f_basename = os.path.basename(f_path)
        print(f_basename)
        domain = f_basename.split('_')[1]
        #fpath=os.path.join(dir_data, f_path)
        d = xr.open_dataset(f_path).isel(Time=0)
        #d = xr.open_dataset(fpath)
        time = dt.datetime.strptime(
            f_basename, 'wrfout_{}_%Y-%m-%d_%H:%M:%S'.format(domain))
        print(time)
        h_agl_staggered = (d.PHB + d.PH) / wrf.G0
        h_agl = bn.move_mean(
            h_agl_staggered.mean(dim='south_north').mean(dim='west_east'),
            2)[1:]
        h = bn.move_mean(h_agl_staggered.values, 2, axis=0)[1:]
        t = d['T'].values
        p = (d.P + d.PB).values
        q = d.QVAPOR.values

        out = xr.Dataset()
        out.coords['time'] = time
        ##        out.coords['h_agl'] = np.mean(h_agl, axis=0)
        out.coords['x'] = range(d.XLONG.shape[1])
        out.coords['y'] = range(d.XLAT.shape[0])
        out['lat'] = (('y', 'x'), d.XLAT.values[:])
        out['lon'] = (('y', 'x'), d.XLONG.values[:])
        out['terrain'] = (('y', 'x'), d.HGT.values)
        out['u10'] = (('y', 'x'), d.U10.values)
        out['v10'] = (('y', 'x'), d.V10.values)
        out['rain'] = (('y', 'x'), d.RAINC + d.RAINNC)
        out['t2'] = (('y', 'x'), d.T2.values)
        out['so2_concentration'] = (('h_agl', 'y', 'x'), d.so2.values)
        out['o3_concentration'] = (('h_agl', 'y', 'x'), d.o3.values)
        out['nox_concentration'] = (('h_agl', 'y', 'x'), (d.no2 + d.no).values)
        out['pm25'] = (('h_agl', 'y', 'x'), d.PM2_5_DRY.values)
        out['pm10'] = (('h_agl', 'y', 'x'), d.PM10.values)
        ##            wrf.x_to_yOm3(d.so2.values, (d.PB + d.P).values,
        ##                          d['T'].values, mm=64)
        ##        )
        out['p_sl'] = (('y', 'x'), wrf.slp(h, p, t, q))
        out['rh'] = (('y', 'x'), wrf.rh(p, t, q)[0])
        out.to_netcdf(
            os.path.join(
                config['output-wrf'], '{domain}_{date}.nc'.format(
                    domain=domain, date=(time.strftime('%Y%m%d%H%M')))))
Example #6
0
def main(config_path):
    config = {}
    with open(config_path) as f_config:
        config = json.load(f_config)

    out, times, h_agl = xr.Dataset(), [], []
    for f_path in sorted(g.glob(os.path.join(
        config['output-wrf-raw'], 'wrfout_*'
    ))):
        print(f_path)
        f_basename = os.path.basename(f_path)
        domain = f_basename.split('_')[1]
        d = xr.open_dataset(f_path).isel(Time=0)
        time = dt.datetime.strptime(
            f_basename,
            'wrfout_{}_%Y-%m-%d_%H:%M:%S'.format(domain)
        )
        h_agl_staggered = (d.PHB + d.PH)/wrf.G0
        h_agl = bn.move_mean(h_agl_staggered
                              .mean(dim='south_north')
                              .mean(dim='west_east'), 2)[1:]
        h = bn.move_mean(h_agl_staggered.values, 2, axis=0)[1:]
        t = d['T'].values
        p = (d.P + d.PB).values
        q = d.QVAPOR.values

        out = xr.Dataset()
        out.coords['time'] = time
#        out.coords['h_agl'] = np.mean(h_agl, axis=0)
        out.coords['lat'] = d.XLAT.values[:, 0]
        out.coords['lon'] = d.XLONG.values[0, :]
        out['terrain'] = (('lat', 'lon'), d.HGT.values)
 

#        for time, gr in it.groupby(times[:-1], key=lambda x: 
#          x.replace(minute=0)): f_path = os.path.join(
#            config['output-wrf-raw'],
#            dt.datetime.strftime(time, 'wrfout_d01_%Y-%m-%d_%H*')
#        )
#        d = xr.concat((xr.open_mfdataset(f_path, concat_dim='Time').load(),
#                       xr.open_dataset(os.path.join(
#                           config['output-wrf-raw'],
#                           dt.datetime.strftime(
#                               time + dt.timedelta(hours=1),
#                               'wrfout_d01_{}'.format(config['fmt']['date'])
#                           )
#                       )).load()), dim='Time')

        out['u10'] = (('lat', 'lon'), d.U10.values)
        out['v10'] = (('lat', 'lon'), d.V10.values)
        out['rain'] = (('lat', 'lon'), d.RAINC + d.RAINNC)
        out['t2'] = (('lat', 'lon'), d.T2.values)
        out['so2_concentration'] = (
            ('h_agl', 'lat', 'lon'), d.so2.values) 
        out['pm25'] = (
            ('h_agl', 'lat', 'lon'), d.PM2_5_DRY.values) 
#            wrf.x_to_yOm3(d.so2.values, (d.PB + d.P).values,
#                          d['T'].values, mm=64) 
#        )
        out['p_sl'] = (('lat', 'lon'), wrf.slp(h, p, t, q))
        out['rh'] = (('lat', 'lon'), wrf.rh(p, t, q)[0])
        out.to_netcdf(
            os.path.join(config['output-wrf'],
                         '{domain}_{date}.nc'
                         .format(domain=domain,
                                 date=(time.strftime('%Y%m%d%H%M'))))
        )
Example #7
0
        WriteNetCDF(File_fin, File, LON, LAT, rgdTimeMM, TIME, 'RH2',
                    'relative humidity 2m above ground', '%', RH_vals)

    # Calcualte RH on pressure level
    for pl in range(len(Plevs)):
        SaveDirFIN = SaveDir + 'RH' + Plevs[pl]
        File_fin = SaveDirFIN + '/' + 'RH' + Plevs[
            pl] + '_' + sYYYYMM + '_daymean.nc'
        File = File_fin + '_copy'
        if os.path.exists(File_fin) == 0:
            if not os.path.exists(SaveDirFIN):
                os.makedirs(SaveDirFIN)
            Uf = SaveDir + 'T' + Plevs[pl] + '/T' + Plevs[
                pl] + '_' + sYYYYMM + '_daymean.nc'
            ncid = Dataset(Uf, mode='r')
            TT = np.squeeze(ncid.variables['T' + Plevs[pl]][:])
            ncid.close()
            Vf = SaveDir + 'Q' + Plevs[pl] + '/Q' + Plevs[
                pl] + '_' + sYYYYMM + '_daymean.nc'
            ncid = Dataset(Vf, mode='r')
            QQ = np.squeeze(ncid.variables['Q' + Plevs[pl]][:])
            ncid.close()

            rgrP = np.copy(QQ)
            rgrP[:] = int(Plevs[pl]) * 100.
            RH_vals = wrf.rh(QQ, rgrP, TT, meta=False)

            WriteNetCDF(File_fin, File, LON, LAT, rgdTimeMM, TIME,
                        'RH' + Plevs[pl], 'relative humidity ' + Plevs[pl],
                        '%', RH_vals)