def discrimination_threshold(self) -> None:
     visualizer = DiscriminationThreshold(self.trained_model)
     visualizer.fit(self.X_test,
                    self.y_test)  # Fit the data to the visualizer
     save_dir = f"{self.plots_dir}/discrimination_plot_{self.model_id}.png"
     visualizer.show(outpath=save_dir)
     if not LOCAL:
         upload_to_s3(save_dir,
                      f'plots/discrimination_plot_{self.model_id}.png',
                      bucket=S3_BUCKET_NAME)
     plt.clf()
def discrimination_thresholding(xx,yy,estimatorss,**kwargs):
    vz = DiscriminationThreshold(estimatorss, classes=['Reach, 1 Reach, or L/R Reach', 'Null, Multiple Reaches, Or Multiple Arms'],
        cmap="YlGn", size=(600, 360), **kwargs)
    vz.fit(xx,yy)
    vz.score(xx,yy)
    vz.show()