def discrimination_threshold(self) -> None: visualizer = DiscriminationThreshold(self.trained_model) visualizer.fit(self.X_test, self.y_test) # Fit the data to the visualizer save_dir = f"{self.plots_dir}/discrimination_plot_{self.model_id}.png" visualizer.show(outpath=save_dir) if not LOCAL: upload_to_s3(save_dir, f'plots/discrimination_plot_{self.model_id}.png', bucket=S3_BUCKET_NAME) plt.clf()
def discrimination_thresholding(xx,yy,estimatorss,**kwargs): vz = DiscriminationThreshold(estimatorss, classes=['Reach, 1 Reach, or L/R Reach', 'Null, Multiple Reaches, Or Multiple Arms'], cmap="YlGn", size=(600, 360), **kwargs) vz.fit(xx,yy) vz.score(xx,yy) vz.show()