Example #1
0
argparser = argparse.ArgumentParser(
    description='train yolo-v3 network')

argparser.add_argument(
    '-c',
    '--config',
    default="configs/svhn.json",
    help='config file')


if __name__ == '__main__':
    args = argparser.parse_args()
    config_parser = ConfigParser(args.config)

    # 1. create generator
    train_generator, valid_generator = config_parser.create_generator()

    # 2. create model
    model = config_parser.create_model()

    # 3. training
    learning_rate, save_dname, n_epoches = config_parser.get_train_params()

    train_fn(model,
             train_generator,
             valid_generator,
             learning_rate=learning_rate,
             save_dname=save_dname,
             num_epoches=n_epoches)
Example #2
0
argparser.add_argument('-c',
                       '--config',
                       default="configs/test.json",
                       help='config file')

if __name__ == '__main__':
    args = argparser.parse_args()
    # config = './configs/svhn.json'
    config = args.config
    config_parser = ConfigParser(config)

    # 1. create generator
    split_train_valid = config_parser.split_train_val()
    train_generator, valid_generator = config_parser.create_generator(
        split_train_valid=split_train_valid)

    # 2. create model
    model = config_parser.create_model()

    # 3. training
    learning_rate, save_dir, weight_name, n_epoches, checkpoint_path = config_parser.get_train_params(
    )
    train_fn(model,
             train_generator,
             valid_generator,
             learning_rate=learning_rate,
             save_dir=save_dir,
             weight_name=weight_name,
             num_epoches=n_epoches,
             configs=config_parser)