argparser = argparse.ArgumentParser( description='train yolo-v3 network') argparser.add_argument( '-c', '--config', default="configs/svhn.json", help='config file') if __name__ == '__main__': args = argparser.parse_args() config_parser = ConfigParser(args.config) # 1. create generator train_generator, valid_generator = config_parser.create_generator() # 2. create model model = config_parser.create_model() # 3. training learning_rate, save_dname, n_epoches = config_parser.get_train_params() train_fn(model, train_generator, valid_generator, learning_rate=learning_rate, save_dname=save_dname, num_epoches=n_epoches)
argparser.add_argument('-c', '--config', default="configs/test.json", help='config file') if __name__ == '__main__': args = argparser.parse_args() # config = './configs/svhn.json' config = args.config config_parser = ConfigParser(config) # 1. create generator split_train_valid = config_parser.split_train_val() train_generator, valid_generator = config_parser.create_generator( split_train_valid=split_train_valid) # 2. create model model = config_parser.create_model() # 3. training learning_rate, save_dir, weight_name, n_epoches, checkpoint_path = config_parser.get_train_params( ) train_fn(model, train_generator, valid_generator, learning_rate=learning_rate, save_dir=save_dir, weight_name=weight_name, num_epoches=n_epoches, configs=config_parser)