Exemple #1
0
def run_lambda_tst(y, M, Omega, epsilon, lbd):
    """
  Wrapper for TST algorithm (with default optimized params)
  for approximate analysis recovery within ABS-lambda approach
  """
    nsweep = 300
    return ABSlambda.tst_recom(y, M, Omega, epsilon, lbd, nsweep)
Exemple #2
0
def run_lambda_tst(y, M, Omega, epsilon, lbd):
    """
  Wrapper for TST algorithm (with default optimized params)
  for approximate analysis recovery within ABS-lambda approach
  """
    nsweep = 300
    return ABSlambda.tst_recom(y, M, Omega, epsilon, lbd, nsweep)
Exemple #3
0
def run_lambda_sl0(y,M,Omega,epsilon,lbd):
  """
  Wrapper for SL0 algorithm within ABS-lambda approach for approximate analysis recovery
  """    
  sigma_min = 0.001
  sigma_decrease_factor = 0.5
  mu_0 = 2
  L = 10
  return ABSlambda.sl0(y,M,Omega,epsilon, lbd, sigma_min, sigma_decrease_factor, mu_0, L)
Exemple #4
0
def run_lambda_sl0(y, M, Omega, epsilon, lbd):
    """
  Wrapper for SL0 algorithm within ABS-lambda approach for approximate analysis recovery
  """
    sigma_min = 0.001
    sigma_decrease_factor = 0.5
    mu_0 = 2
    L = 10
    return ABSlambda.sl0(y, M, Omega, epsilon, lbd, sigma_min, sigma_decrease_factor, mu_0, L)
Exemple #5
0
def run_lambda_ompeps(y, M, Omega, epsilon, lbd):
    """
  Wrapper for OMP algorithm, with stopping criterion = epsilon,
  for approximate analysis recovery within ABS-lambda approach
  """
    return ABSlambda.ompeps(y, M, Omega, epsilon, lbd)
Exemple #6
0
def run_lambda_bp(y, M, Omega, epsilon, lbd):
    """
  Wrapper for BP algorithm within ABS-lambda approach for approximate analysis recovery
  """
    return ABSlambda.bp(y, M, Omega, epsilon, lbd, numpy.zeros(Omega.shape[0]))
Exemple #7
0
def run_lambda_ompeps(y, M, Omega, epsilon, lbd):
    """
  Wrapper for OMP algorithm, with stopping criterion = epsilon,
  for approximate analysis recovery within ABS-lambda approach
  """
    return ABSlambda.ompeps(y, M, Omega, epsilon, lbd)
Exemple #8
0
def run_lambda_bp(y, M, Omega, epsilon, lbd):
    """
  Wrapper for BP algorithm within ABS-lambda approach for approximate analysis recovery
  """
    return ABSlambda.bp(y, M, Omega, epsilon, lbd, numpy.zeros(Omega.shape[0]))