Exemple #1
0
    def test_state_copy_time(self):
        results = dict()
        l = 6
        copies = dict()
        for t in range(10, 100, 20):
            tower : Tower_State = Tower_State()
            for new_block in [Block(block_mesh, 'flat_wide', (0, 0, i)) for i in range(1, t)]:
                if tower.can_add(new_block):
                    tower.add(new_block)

            s = time.time()
            copies[t] = [copy(tower) for _ in range(l)]
            e = time.time() - s
            results[t] = e / l
            print(results[t])
        pp(results)
        for height, tower_copy_list in copies.items():
            for i, tower in enumerate(tower_copy_list):
                new_block  = Block(block_mesh, 'flat_wide', (0, i, height))
                if tower.can_add(new_block):
                    tower.add(new_block)
        towers = []
        for copy_list in copies.values():
            towers += copy_list
        for i, tower1 in enumerate(towers):
            for j, tower2 in enumerate(towers[i+1:]):
                self.assertNotEqual(tower1, tower2)
                self.assertNotEqual(tower1._connectivity, tower2._connectivity)
Exemple #2
0
    def test_tower_copy(self):
        tower1 = Tower_State()
        tower1_copy = copy(tower1)
        self.assertEqual(tower1, tower1_copy)
        self.assertTrue(tower1 is not tower1_copy)

        tower2 : Tower_State = Tower_State()
        for new_block in [Block(block_mesh, 'flat_wide', (0, 0, i)) for i in range(1, 50)]:
            if tower2.can_add(new_block):
                tower2.add(new_block)

        tower2_copy : Tower_State = copy(tower2)
        self.assertEqual(tower2, tower2_copy)
        self.assertTrue(tower2 is not tower2_copy)

        new_block = Block(block_mesh, 'flat_wide', (0, 0, 50))
        if tower2.can_add(new_block):
            tower2.add(new_block)
            print("Added new block to tower 2, {}".format(new_block.__str__()))

        self.assertNotEqual(tower2, tower2_copy)
        self.assertTrue(tower2 is not tower2_copy)

        self.assertNotEqual(tower2._connectivity, tower2_copy._connectivity)
        self.assertNotEqual(list(tower2._orientation_counter), list(tower2_copy._orientation_counter))
    def test_constructor(self):
        floor = RingFloor(floor_mesh)
        if DISPLAY:
            display([floor.render()])

        block1 = Block(block_mesh, (0, 0, 0), (0, 0, 0))
        if DISPLAY:
            display_colored([floor.render(), block1.render()], [to_rgba((0.1, 0.1, 0.1), 0.001 ), 'b'])
    def get_successors(self, tower_state: Tower_State):

        print("Building succesors for state of height:{}".format(tower_state._max_level))
        pp(tower_state)
        all_possible_son_desc = []
        for father_block in tower_state.gen_blocks(no_floor=False, filter_saturated_block=False):
            if father_block.is_saturated(tower_state):
                self._num_of_blocks_saturated += 1
                continue
            all_possible_son_desc.extend(filter(
                lambda desc: not tower_state.is_bad_block(Block.gen_str(desc)),
                father_block.gen_possible_block_descriptors(
                      limit_orientation=lambda o: father_block.is_perpendicular(o),
                      limit_len=self._limit_sons,
                      random_order=self._gen_randomly
                )
            )
            )
        if self._gen_randomly:
            shuffle(all_possible_son_desc)
        else:
            all_possible_son_desc.sort(key=lambda desc: desc[1][Z], reverse=True)
        for _ in range(self._limit_branching):
            new_tower = copy(tower_state)
            actions = []
            while len(actions) < self._num_of_blocks_in_action:
                if all_possible_son_desc:
                    desc = all_possible_son_desc.pop()
                else:
                    break
                if tower_state.is_bad_block(Block.gen_str(desc)):
                    self._num_of_descriptors_disqualified += 1
                    continue
                son_block = Block(BLOCK_MESH, *desc)
                if new_tower.can_add(son_block):
                    new_tower.add(son_block)
                    actions.append(son_block)
                else:
                    self._num_of_blocks_disqualified += 1
            if actions:
                yield (new_tower, actions, len(actions))
            else:
                print(
                    "\tNum bad from hash:\t{}\n\tNum of blocks disqualified:\t{}\n\tNum of blocks saturated:\t{}".format(
                        tower_state._bad_block_calls,
                        self._num_of_blocks_disqualified,
                        self._num_of_blocks_saturated
                    ))
                return
                #successors.append((new_tower, actions, len(actions)))
        print("\tNum of desc disqualified:\t{}\n\tNum of blocks disqualified:\t{}\n\tNum of blocks saturated:\t{}".format(
            self._num_of_descriptors_disqualified,
            self._num_of_blocks_disqualified,
            self._num_of_blocks_saturated
        ))
    def test_rotate(self):
        blocks = []
        for orientation in ORIENTATIONS:
            blocks.append(Block(block_mesh, orientation, (0, 0, 0)))
        for block in blocks:
            self.assertEqual(list(block.get_cog()), [0, 0, 0])
        if DISPLAY:
            for b in blocks:
                print (b)
            display([b.render() for b in blocks])

        with self.assertRaises(AssertionError):
            Block(block_mesh, (-90, -90, -90), (0, 0, 0))
 def test_spawn_block_time(self):
     size = 10
     all_desc = []
     for orientation in ORIENTATIONS:
         blocks = [Block(block_mesh, orientation, (i, i, 0)) for i in range(size)]
         o_time = 0
         for block in blocks:
             all_desc += list(block.gen_possible_block_descriptors())
     ss = time.time()
     for desc in all_desc:
         b = Block(block_mesh, desc[0], desc[1])
     ee = time.time() - ss
     print("Time to spawn {} Blocks: {}".format(len(all_desc), ee))
def calculate_below(block: Block, blocks: List[Block]) -> Set[Block]:
    """
    Calculated which of a given list of blocks are strictly under this given sample block.
    :param block: a single block with a bottom level L
    :param blocks: A list of blocks, all top level L-1

    X - Segment of initial block
    S - Support blocks
    N - Non support blocks

                    Front View      |            Side View     |          Top View
                    ----------------------------------------------------------------------
                        XXXXXX      |                X         |      NNNNNN
                    N    S   S      |       NNNNNN SSSSSS      |
                                    |                          |                X
                                    |                          |              SSXSSS
                                    |                          |                X
                                    |                          |              SSXSSS

    :return: A list of 1 or more blocks that are strictly under the given block,
            or an empty list if no such blocks exist
    """
    supports = set()

    cells = block.get_cover_cells()
    for potential_support in blocks:
        for cell in cells:
            # Check if this cell is above under a cell from another block
            if cell in potential_support.get_cover_cells():
                supports.add(potential_support)
                break
    return supports
def calculate_above(block: Block, blocks: List[Block]) -> Set[Block]:
    """
    Calculated which of a given blocks are strictly above this given sample block.
    :param block: a single block with a bottom level L
    :param block_state: A full dictionary of blocks organized by thier top levels

    X - Segment of initial block
    A - Above (Suportee) blocks
    N - Non above blocks

                    Front View      |            Side View     |          Top View
                    ----------------------------------------------------------------------
                        AAAAAA      |                A         |      NNNNNN
                    N    X   N      |       NNNNNN XXXXXX      |
                                    |                          |                A
                                    |                          |              XXAXXX
                                    |                          |                A
                                    |                          |              NNANNN

    :return: A list of 1 or more blocks that are strictly above the given block,
            or an empty list if no such blocks exist
    """
    supported = set()

    cells = block.get_cover_cells()
    for potential_supported_block in blocks:
        for cell in cells:
            # Check if this cell is above under a cell from another block
            if cell in potential_supported_block.get_cover_cells():
                supported.add(potential_supported_block)
                break
    return supported
Exemple #9
0
    def test_perp_tower(self):
        STAGE = 10
        tower: Tower_State = Tower_State(size=30, ring_floor=True)
        for i in range(100):
            added = []
            for father_block in tower.gen_blocks(no_floor=False):
                if not father_block.is_saturated(tower):
                    for son_desc in father_block.gen_possible_block_descriptors(
                            limit_orientation=lambda o: father_block.is_perpendicular(o), limit_len=STAGE / 2, random_order=True):
                        son_block = Block(floor_mesh, *son_desc)
                        if tower.can_add(son_block):
                            tower.add(son_block)
                            added.append(son_block)
                            if len(added) > STAGE:
                                break
                    if len(added) > STAGE:
                        break
            print(i)
            DISPLAY = False
            TO_FILE = True

            if DISPLAY or TO_FILE:
                old_meshes = [b.render() for b in filter(lambda b: b not in added, tower.gen_blocks())]
                new_meshes = [b.render() for b in added]
                display_colored(old_meshes + new_meshes,
                                ['gray'] * len(old_meshes) + ['cyan'] * len(new_meshes),
                                scale=60,
                                to_file=TO_FILE and not DISPLAY,
                                file_name="plots/ring_floor4/{0:03}.png".format(i)
                                )
Exemple #10
0
    def test_iteration(self):
        tower: Tower_State = Tower_State()
        for new_block in [Block(block_mesh, 'flat_wide', (0, 0, i)) for i in range(1, 10)]:
            if tower.can_add(new_block):
                tower.add(new_block)

        for b in tower.gen_blocks():
            print(b.get_top_level())
 def test_str_time(self):
     block : Block = Block(block_mesh, (0,0,0), (0,0,0))
     s = time.time()
     r = 3000000
     for i in range(r):
         _ = str(block)
     elapse = time.time() - s
     print("For {}X:\t{}".format(r, elapse))
    def test_cells(self):
        blocks = []
        for i, orientation in enumerate(ORIENTATIONS):
            blocks.append(Block(block_mesh, orientation, ((-1)**i * i *10, (-1)**(i + 1) * i * 10, 0)))


        if DISPLAY:
            display_multiple_cells([block.get_cells() for block in blocks])
    def test_hash(self):
        block1 = Block(block_mesh, (0, 0, 0), (0, 0, 0))
        block2 = Block(block_mesh, (0, 0, 0), (0, 0, 0))
        self.assertEqual(hash(block1), hash(block2))

        blocks = [Block(block_mesh, (0, 0, 0), (0, 0, 0)) for _ in range(10)]
        for block1 in blocks:
            for block2 in blocks:
                self.assertEqual(hash(block1), hash(block2))

        blocks = [Block(block_mesh, (0, 0, 0), (0, 0, 0)) for _ in range(100)]
        for block1 in blocks:
            for block2 in blocks:
                self.assertEqual(hash(block1), hash(block2))

        for orientation in ORIENTATIONS:
            blocks = [Block(block_mesh, orientation, (0, 0, 0)) for _ in range(10)]
            for block1 in blocks:
                for block2 in blocks:
                    self.assertEqual(hash(block1), hash(block2))

        for orientation in ORIENTATIONS:
            blocks_1 = [Block(block_mesh, orientation, (10, 10, 10)) for _ in range(10)]
            blocks_2 = [Block(block_mesh, orientation, (10, 10, 10)) for _ in range(10)]
            for block1 in blocks_1:
                for block2 in blocks_2:
                    self.assertEqual(hash(block1), hash(block2))
    def test_sons(self):
        floor = RingFloor(floor_mesh, size=50)
        if DISPLAY:
            display([floor.render()])

        blocks = [Block(block_mesh, *d) for d in floor.gen_possible_block_descriptors()]
        some = sample(blocks, 100)
        if DISPLAY:
            display([b.render() for b in some])
 def test_hash_time(self):
     block : Block = Block(block_mesh, (0,0,0), (0,0,0))
     s = time.time()
     r = 1000000
     for i in range(r):
         _ = hash(block)
     elapse = time.time() - s
     print("For {}X:\t{}".format(r, elapse))
     print(block.__str__())
def is_stable(tower_state, new_block: Block):
    """
    Boolean recursive function that calculates if the new block to be places in the
    scheme of the current block state will stand, or topple.
    :param tower_state: A state of the block tower.
    :param new_block: potential block to add, organized in a dictionary with keys as levels and values list of blocks
                    level -> [block1, block2, ...]
    :return: True iff the new arrangement still stands
    """
    bottom_level = new_block.get_bottom_level()
    top_level = new_block.get_top_level()
    # blocks_by_top_level= tower_state.get_blocks_by_top_level()
    # blocks_by_bottom_level= tower_state.get_blocks_by_bottom_level()

    # Initiate the relation to surrounding blocks in the tower
    # Short-circuit the expensive calculation if can be skipped.
    blocks_below = calculate_below(new_block, tower_state.get_by_top(bottom_level - 1)) \
        if (bottom_level - 1) in tower_state \
        else set()
    tower_state.set_blocks_below(new_block, blocks_below)

    blocks_above = calculate_above(new_block, tower_state.get_by_bottom(top_level + 1)) \
        if (top_level + 1) in tower_state \
        else set()
    tower_state.set_blocks_above(new_block, blocks_above)

    # Last attempt to find if this situation was already stored as a unstable combination
    if tower_state.is_bad_block(
            tower_state.stringify_block_neighbors(new_block)):
        return False

    # connect the new block to the blocks above and below by making changes to their neighbor setting.
    tower_state.connect_block_to_neighbors(new_block)

    if is_stable_helper((tower_state, new_block)):
        return True
    else:
        # We can stringify this block's failure, contingent on it's neighbors.
        # This will allow to quickly check in the future if this block is stable, relative to its surroundings
        tower_state.add_bad_block_state(new_block)

        # release the relation of this block on it neighbors
        tower_state.disconnect_block_from_neighbors(new_block)
        return False
    def test_perp_sons(self):
        floor = RingFloor(floor_mesh, size=50)

        blocks = [Block(block_mesh, *d) for d in floor.gen_possible_block_descriptors(
            limit_orientation=lambda o: floor.is_perpendicular(o))]
        some = sample(blocks, 100)
        print (floor.orientation)
        print (floor.is_perpendicular(floor))
        if DISPLAY:
            display([b.render() for b in some + [floor]])
def is_overlapping(block_tower, new_block: Block):
    """
    Check if new block clashes (physically overlaps) with the rest of the block tower
    :param block_tower: A tower state
    :param new_block: either a new object or just it's string representation
    :return:
    """
    if block_tower.is_bad_block(new_block):
        return True

    bottom_level: int = new_block.get_bottom_level()
    top_level: int = new_block.get_top_level()
    """
    Only scan blocks with top levels above my bottom level.
    X - Block. B - Bottom layer. T - Top layer
    
                        XXXXXXX          
    new block           XXXXXXX         others  TTTTTTTT     others
                        BBBBBBB           in    XXXXXXXX       out
                                                                        TTTT
                                                                        XXXX
    
    """
    for level in filter(lambda l: l >= bottom_level, block_tower.keys()):
        for other_block in block_tower.get_by_top(level):
            """
            Diqualify for overlap any block with a bottom above our top
            X - Block. B - Bottom layer. T - Top layer

                                            others  XXXXXXXX      others    XXXXX
                                              in    XXXXXXXX       out      BBBBB
                                TTTTTTT             BBBBBBBB
            new block           XXXXXXX               
                                XXXXXXX           


            """
            if other_block.get_bottom_level(
            ) <= top_level and other_block.is_overlapping(new_block):
                # perform a memoization of bad blocks we've seen
                block_tower.add_bad_block(new_block)
                return True
    return False
Exemple #19
0
    def test_covers(self):
        tower: Tower_State = Tower_State()
        for new_block in [Block(block_mesh, 'flat_wide', (0, 0, i)) for i in range(1, 10)]:
            if tower.can_add(new_block):
                tower.add(new_block)
        cover = tower.get_cover_at_level(0)
        for i in range(10):
            self.assertEqual(cover, tower.get_cover_at_level(i), str(tower.get_cover_at_level(i))+str(i))

        tower: Tower_State = Tower_State()
        for i in range(10):
            for j in range(i, 10 - i):
                new_block = Block(block_mesh, 'flat_thin', (0, j*3, i))
                if tower.can_add(new_block):
                    tower.add(new_block)
        if DISPLAY:
            display([b.render() for b in tower.gen_blocks()])
        prev = 10000
        for level in range(10):
            size = tower.get_cover_at_level(level).__len__()
            self.assertLessEqual(size, prev)
            prev = size
    def test_inertia(self):
        block1 = Block(block_mesh, (0,0,0,), (0,0,0))
        pp(block1.render().get_mass_properties())
        blocks = []
        for orientation in ORIENTATIONS:
            block1 = Block(block_mesh, orientation, (0, 0, 0))
            print(orientation)
            pp(block1.render().get_mass_properties())
            blocks.append(block1)

        m = combine([b.render() for b in blocks])
        print("all")
        pp(m.get_mass_properties())

        # inertia of tall tower
        blocks = [Block(block_mesh, 'tall_thin', (0, 0, i*15)) for i in range(1)]
        m  = combine([b.render() for b in blocks])
        print("Tall tower")
        pp(m.get_mass_properties())
        if DISPLAY:
            display([m])

        # inertia of wide (Y) tower
        blocks = [Block(block_mesh, 'short_thin', (i*15, 0, 0)) for i in range(10)]
        m  = combine([b.render() for b in blocks])
        print("inertia of wide (Y) tower")
        pp(m.get_mass_properties())
        if DISPLAY:
            display([m])

        # inertia of T shape tower
        blocks = [Block(block_mesh, 'short_thin', (0, 0, 0))] + \
                [Block(block_mesh, 'flat_wide', (i, 0, 2)) for i in range(-5, 5)]

        m  = combine([b.render() for b in blocks])
        print("inertia of T shape tower")
        pp(m.get_mass_properties())
        if DISPLAY:
            display([m])
 def test_son_desc_time(self):
     result = []
     size = 1000
     ss  = time.time()
     num_of_desc = 0
     for orientation in ORIENTATIONS:
         blocks = [Block(block_mesh, orientation, (i, i, 0)) for i in range(size)]
         # block1 = Block(block_mesh, orientation, (0, 0, 0))
         o_time = 0
         for block in blocks:
             s = time.time()
             sons_dsc = list(block.gen_possible_block_descriptors())
             o_time += time.time() - s
             num_of_desc += len(sons_dsc)
         result.append((orientation, o_time/size))
     ee = time.time() - ss
     print("Time to spawn {} descriptors: {}".format(num_of_desc, ee))
     pp(result)
Exemple #22
0
 def test_auto_close(self):
     block = Block(block_mesh, (0, 0, 0), (0, 0, 2))
     print("block created")
     display([b.render() for b in [block]], auto_close=True)
 def test_translate(self):
     block1 = Block(block_mesh, (0, 0, 0), (10, 10, 10))
     self.assertEqual(list(block1.get_cog()), [10, 10, 10])
     if DISPLAY:
         print(str(block1))
         display([block1.render()])
Exemple #24
0
    def get_spread(self, block1: Block, block2: Block):
        """
        Retrieves the space between two blocks that can support blocks above, should their center of gravity
        sit within them.
        Spread should only be calculated between blocks that have already been recognized as close enough to hold
        another block above them, otherwise behavior is not defined, or in the best case an assertion will fail.
        This is garanteed by only calling get_spread on blocks both directly under the same piece.
        Spread is commutative
        :param block1:
        :param block2:
        :return:
        """

        assert block1.get_top_level() == block2.get_top_level(
        ), str(block1) + str(block1.get_top_level()) + str(block2) + str(
            block2.get_top_level())

        # a spread with yourself it the cells you cover
        if block1 == block2:
            return block1.get_cover_cells()

        ordered_pair = (block1, block2) if block1 < block2 else (block2,
                                                                 block1)
        if ordered_pair in self._spreads_memory:  # shared with father
            return self._spreads_memory[ordered_pair]

        b1_cover_x = {cell[X] for cell in block1.get_cover_cells()}
        b2_cover_x = {cell[X] for cell in block2.get_cover_cells()}

        b1_cover_y = {cell[Y] for cell in block1.get_cover_cells()}
        b2_cover_y = {cell[Y] for cell in block2.get_cover_cells()}

        inter_x = b1_cover_x & b2_cover_x
        inter_y = b1_cover_y & b2_cover_y

        spread = set()
        spread |= block1.get_cover_cells()
        spread |= block2.get_cover_cells()
        if (inter_x):
            union_y = b1_cover_y | b2_cover_y
            min_y = int(min(union_y))
            max_y = int(max(union_y))
            for y in range(min_y, max_y + 1):
                for x in inter_x:
                    spread.add((x, y))

        elif (inter_y):
            union_x = b1_cover_x | b2_cover_x
            min_x = int(min(union_x))
            max_x = int(max(union_x))
            for x in range(min_x, max_x + 1):
                for y in inter_y:
                    spread.add((x, y))

        else:  # no common pieces - skew lines
            """
                                                    X                   XXXXXXX
            XXXXXXX                                 X                               X
                                            or              X       or              X
                    XXXXXXXX                                X                       X


            Relevant for flat pieces only.
            """
            pass
            # See if the candidate blocks above can help increase spread
            candidate_blocks = self.get_blocks_above(
                block1) & self.get_blocks_above(block2)

            if candidate_blocks:
                flat_block = candidate_blocks.pop()
                center_x, center_y, _ = tuple(flat_block.get_cog())
                skew_center = set()
                for cell in spread:
                    new_cell = ((cell[X] + center_x) // 2,
                                (cell[Y] + center_y) // 2)
                    skew_center.add(new_cell)
                spread |= skew_center

        self._spreads_memory[ordered_pair] = spread
        return spread
    def test_orientation(self):
        block1 = Block(block_mesh, (0,  0, 0), (0, 0, 0))
        block2 = Block(block_mesh, 'short_wide', (0, 0, 0))
        block3 = Block(block_mesh, ORIENTATION.SHORT_WIDE, (0, 0, 0))
        self.assertEqual(block1.get_cells(), block2.get_cells())
        self.assertEqual(block1.get_cells(), block3.get_cells())

        block1 = Block(block_mesh, (90,  0, 0), (0, 0, 0))
        block2 = Block(block_mesh, 'tall_wide', (0, 0, 0))
        block3 = Block(block_mesh, ORIENTATION.TALL_WIDE, (0, 0, 0))
        self.assertEqual(block1.get_cells(), block2.get_cells())
        self.assertEqual(block1.get_cells(), block3.get_cells())
    def get_successors(self, state: Tower_State):
        new_states = [copy(state) for _ in range(self._limit_branching)]
        successors = []
        pp(state)
        for new_state in new_states:
            num_of_blocks_added = 0
            actions = []
            for father_block in state.gen_blocks(no_floor=False):
                if father_block.is_saturated(new_state):
                    self._num_of_blocks_saturated += 1
                    continue
                if len(actions) > self._num_of_blocks_in_action:
                    break
                son_descriptors = list(father_block.gen_possible_block_descriptors(
                    limit_len=self._limit_sons,
                    limit_orientation=self._son_orientation_filter,
                    random_order=self._gen_randomly
                ))
                if self._gen_randomly:
                    shuffle(son_descriptors)
                for desc in son_descriptors:
                    if len(actions) > self._num_of_blocks_in_action:
                        break
                    if state.is_bad_block(Block.gen_str(desc)):
                        self._num_of_descriptors_disqualified += 1
                    else:  # good block description, lets try it out
                        blocks = [Block(BLOCK_MESH, *desc)]
                        if self._use_symmetry:
                            sub_descriptors = Block_Search.propagate(*desc, dist=self._symmetrical_base_distance)
                            # qualified_symmetrical_brothers = len(sub_descriptors)
                            for sym_desc in sub_descriptors:
                                if state.is_bad_block(Block.gen_str(desc)):
                                    self._num_of_descriptors_disqualified += 1
                                    # qualified_symmetrical_brothers -= 1
                                else:
                                    blocks.append(Block(BLOCK_MESH, *sym_desc))
                        to_add = []
                        for candidate_block in blocks:
                            if new_state.can_add(candidate_block):
                                to_add.append(candidate_block)
                            else:
                                self._num_of_blocks_disqualified += 1
                            # else:
                            #     if self._use_symmetry:
                            #         qualified_symmetrical_brothers -= 1
                        if self._use_symmetry:
                            if len(to_add) >= self._sym_son_threshold:
                                for good_block in to_add:
                                    new_state.add(good_block)
                                    actions.append(good_block)
                                    num_of_blocks_added += 1

                            else:
                                for good_block in to_add:
                                    self._num_of_blocks_disqualified += 1
                                    new_state.disconnect_block_from_neighbors(good_block)
                        else:
                            for good_block in to_add:
                                new_state.add(good_block)
                                actions.append(good_block)
                                num_of_blocks_added += 1
            successors.append((new_state, actions, len(actions)))
            # if DISPLAY:
            #     display_colored([b.render() for b in state.gen_blocks()])
            # return True
        # print("\tNum of desc disqualified:{}\tNum of blocks disqualified:{}\tNum of staturated:{}".format(
        #     self._num_of_descriptors_disqualified,
        #     self._num_of_blocks_disqualified,
        #     self._num_of_blocks_saturated
        # ))
        return successors
    def test_next_block(self):
        # # simple
        block1 = Block(block_mesh, (0, 0, 0), (0, 0, 0))
        sons = [Block(block_mesh, orientation, position)
                    for orientation, position in block1.gen_possible_block_descriptors()]
        print("All : {}".format(len(sons)))
        if DISPLAY:
            display([b.render() for b in sons + [block1] ], scale=15)

        # limit to type of orientation
        block1 = Block(block_mesh, (0, 0, 0), (0, 0, 0))
        for orientation in ORIENTATIONS:
            sons = [Block(block_mesh, orientation, position)
                    for orientation, position in block1.gen_possible_block_descriptors(lambda o: o == orientation)]
            print(orientation + " : {}".format(len(sons)))
            if DISPLAY:
                display([b.render() for b in sons + [block1] ], scale=15)


        # all orientations around 0, 0, 0
        for orientation in ORIENTATIONS:
            block1 = Block(block_mesh, orientation, (0, 0, 0))
            for orientation in ORIENTATIONS:
                sons = [Block(block_mesh, orientation, position)
                        for orientation, position in block1.gen_possible_block_descriptors(lambda o: o == orientation)]
                print(orientation + " : {}".format(len(sons)))

                if DISPLAY:
                    display([b.render() for b in sons + [block1] ], scale=15)

        # all orientations around 1, 1, 0
        for base_orientation in ORIENTATIONS:
            print("Base orientation : {}".format(base_orientation))
            block1 = Block(block_mesh, base_orientation, (1, 1, 0))
            for son_orientation in ORIENTATIONS:
                sons = list(block1.gen_possible_block_descriptors(lambda o: o == son_orientation))
                print("\t" + son_orientation + " : {}".format(len(sons)))

                if DISPLAY:
                    display([b.render() for b in sons + [block1] ], scale=15)
 def test_constructor(self):
     block1 = Block(block_mesh, (0, 0, 0), (0, 0, 0))
     self.assertEqual(list(block1.get_cog()), [0, 0, 0])
     if DISPLAY:
         print(str(block1))
         display([block1.render()])
Exemple #29
0
    def test_spread(self):
        tower_state = Tower_State()

        #same orientation
        orientation = 'tall_wide'
        block1 = Block(block_mesh, orientation, (0, 0, 0))
        block2 = Block(block_mesh, orientation, (2, 1, 0))

        spread = tower_state.get_spread(block1, block2)
        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread], scale=20)

        orientation = 'short_wide'
        block1 = Block(block_mesh, orientation, (0, 0, 0))
        block2 = Block(block_mesh, orientation, (5, 5, 0))

        spread = tower_state.get_spread(block1, block2)
        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread], scale=20)

        orientation = 'flat_thin'
        block1 = Block(block_mesh, orientation, ( 0,  0, 0))
        block2 = Block(block_mesh, orientation, (10, 10, 0))

        spread = tower_state.get_spread(block1, block2)
        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread], scale=20)

        # differing orientations - must have same top level
        block1 = Block(block_mesh, 'flat_wide', ( 0,  0, 0))
        block2 = Block(block_mesh, 'tall_thin', ( 5, 3, -7))

        spread = tower_state.get_spread(block1, block2)
        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread], scale=20)

        block1 = Block(block_mesh, 'flat_wide', ( 0,  0, 1))
        block2 = Block(block_mesh, 'short_thin', ( -10, 3, 0))

        spread = tower_state.get_spread(block1, block2)
        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread], scale=20)


        # test commutative quality of spread: ie. my spread with you is the same as yours spread with me.
        block1 = Block(block_mesh, 'flat_wide', ( 0,  0, 1))
        block2 = Block(block_mesh, 'short_thin', ( -15, 5, 0))

        spread1 = tower_state.get_spread(block1, block2)
        spread2 = tower_state.get_spread(block2, block1)

        self.assertEqual(spread1, spread2)

        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread1, spread2], scale=20)

        block1 = Block(block_mesh, (0, 0, 0), (0, 5, 1))
        block2 = Block(block_mesh, (0, 0, 0), (-2, -11, 1))
        block3 = Block(block_mesh, 'flat_wide', (-1, -6, 3))
        tower_state.set_blocks_above(block1, {block3})
        tower_state.set_blocks_above(block2, {block3})
        spread = tower_state.get_spread(block2, block1)

        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread], scale=20)

        block1 = Block(block_mesh, (0, 0, 0), (0, 9, 1))
        block2 = Block(block_mesh, (0, 0, 0), (-2, -13, 1))
        block3 = Block(block_mesh, 'flat_wide', (-1, -6, 3))
        tower_state.set_blocks_above(block1, {block3})
        tower_state.set_blocks_above(block2, {block3})
        spread = tower_state.get_spread(block2, block1)

        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread], scale=20)

        block1 = Block(block_mesh, 'short_thin', (-8, -1, 1))
        block2 = Block(block_mesh, 'short_thin', (7, 1, 1))
        block3 = Block(block_mesh, 'flat_wide', (0, 0, 3))
        tower_state.set_blocks_above(block1, {block3})
        tower_state.set_blocks_above(block2, {block3})
        spread = tower_state.get_spread(block2, block1)

        if DISPLAY:
            display([block1.render(), block2.render()])
            display_multiple_cells([block1.get_cells(), block2.get_cells()], scale=20)
            display_multiple_grids([block1.get_cover_cells(), block2.get_cover_cells(), spread], scale=20)
    def test_overlap(self):
        block1 = Block(block_mesh, (0, 0, 0), (0, 0, 0))

        #Overlapping
        overlapping_blocks = []

        overlapping_blocks.append(Block(block_mesh, (0, 0, 0), (0, 0, 0)))      # 0
        overlapping_blocks.append(Block(block_mesh, (90, 90, 0), (0, 0, 1)))    # 1
        overlapping_blocks.append(Block(block_mesh, (90, 0, 0), (0, 7, 0)))     # 2
        overlapping_blocks.append(Block(block_mesh, (90, 0, 0), (0, -7, 0)))    # 3
        overlapping_blocks.append(Block(block_mesh, (90, 0, 0), (0, 0, 0)))     # 4
        for i, block in enumerate(overlapping_blocks):
            if DISPLAY:
                display([b.render() for b in [block1, block]])
                display_multiple_cells([b.get_cells() for b in [block1, block]], scale=10)
            self.assertTrue(block1.is_overlapping(block),
                            "Block {} found not to be overlapping! Joint cells:{}".format(i, str(block.get_cells() & block1.get_cells())))

        if DISPLAY:
            display([b.render() for b in [block1] + overlapping_blocks])

        #Non- Overlapping
        not_overlapping_blocks = []
        not_overlapping_blocks.append(Block(block_mesh, (0, 0, 0), (30, 0, 0)))     # 0
        not_overlapping_blocks.append(Block(block_mesh, (0, 0, 0), (0, 0, 10)))     # 1
        not_overlapping_blocks.append(Block(block_mesh, (0, 0, 0), (0, 0, 5)))      # 2
        not_overlapping_blocks.append(Block(block_mesh, (90, 90, 0),(0, 0, 2)))     # 3


        for i, block in enumerate(not_overlapping_blocks):
            if DISPLAY:
                display([b.render() for b in [block1, block]])
                display_multiple_cells([b.get_cells() for b in [block1, block]], scale=10)
            self.assertTrue(not block1.is_overlapping(block),
                            "Block {} found to be overlapping!\n Joint cells:{}".format(i, str(block.get_cells() & block1.get_cells())))

        if DISPLAY:
            display([b.render() for b in [block1] + not_overlapping_blocks])