def DistMaxbas1(Model): """ ========================================================= DistMaxbas1(Model) ========================================================= DistMaxbas1 method rout the discharge directly to the outlet from each cell using triangular function Parameters ---------- Model : TYPE DESCRIPTION. Returns ------- None. """ Maxbas = Model.Parameters[:, :, -1] for x in range(Model.rows): for y in range(Model.cols): if Model.FlowAccArr[x, y] != Model.NoDataValue: Model.quz[x, y, :] = routing.TriangularRouting1( Model.quz[x, y, :], Maxbas[x, y])
def DistMaxbas2(Model): """ ========================================================= DistMaxbas2(Model) ========================================================= DistMaxbas2 method rout the discharge directly to the outlet from each cell using triangular function, the maxbas parameters are going to be calculated based on the flow path length input Parameters ---------- Model : TYPE DESCRIPTION. Returns ------- None. """ MAXBAS = np.nanmax(Model.Parameters[:, :, -1]) # replace novalue cells by nan Model.FPLArr[Model.FPLArr == Model.NoDataValue] = np.nan MaxFPL = np.nanmax(Model.FPLArr) MinFPL = np.nanmin(Model.FPLArr) #resize_fun = lambda x: np.round(((((x - min_dist)/(max_dist - min_dist))*(1*maxbas - 1)) + 1), 0) resize_fun = lambda x: ((((x - MinFPL) / (MaxFPL - MinFPL)) * (1 * MAXBAS - 1)) + 1) NormalizedFPL = resize_fun(Model.FPLArr) for x in range(Model.rows): for y in range(Model.cols): if not np.isnan(Model.FPLArr[ x, y]): # FPLArray[x,y] != np.nan: #NoDataValue: Model.quz[x, y, :] = routing.TriangularRouting2( Model.quz[x, y, :], NormalizedFPL[x, y])
def FW1Withlake(Model, Lake, ll_temp=None, q_0=None): """ ============================================================== FW1Withlake(Model, Lake,ll_temp=None, q_0=None) ============================================================== FW1 connects two module : 1- The distributed rainfall-runoff module 2- Triangular function-1 routing method 3- Lake module Parameters ---------- Model : TYPE DESCRIPTION. Lake : TYPE DESCRIPTION. ll_temp : TYPE, optional DESCRIPTION. The default is None. q_0 : TYPE, optional DESCRIPTION. The default is None. Returns ------- None. """ plake = Lake.MeteoData[:, 0] et = Lake.MeteoData[:, 1] t = Lake.MeteoData[:, 2] tm = Lake.MeteoData[:, 3] # lake simulation Lake.Qlake, _ = hbv_lake.simulate( plake, t, et, Lake.Parameters, [Model.Timef, Lake.CatArea, Lake.LakeArea], Lake.StageDischargeCurve, 0, init_st=Lake.InitialCond, ll_temp=tm, lake_sim=True) # qlake is in m3/sec # lake routing Lake.QlakeR = routing.muskingum(Lake.Qlake, Lake.Qlake[0], Lake.Parameters[11], Lake.Parameters[12], Model.Timef) # subcatchment distrrm.RunLumpedRRM(Model) distrrm.DistMAXBAS(Model) qlz1 = np.array([ np.nansum(Model.qlz[:, :, i]) for i in range(Model.Parameters.shape[2] + 1) ]) # average of all cells (not routed mm/timestep) quz1 = np.array([ np.nansum(Model.quz[:, :, i]) for i in range(Model.Parameters.shape[2] + 1) ]) # average of all cells (routed mm/timestep) qout = qlz1 + quz1 # qout = (qlz1 + quz1) * Model.CatArea / (Model.Timef* 3.6) Model.qout = qout[:-1] + Lake.QlakeR
def HapiWithlake(Model, Lake, ll_temp=None, q_0=None): """ ============================================================ HapiWithlake(Model, Lake,ll_temp=None, q_0=None) ============================================================ HapiWithlake connects three modules the lake, the distributed ranfall-runoff module and spatial routing module Parameters ---------- Model : [Catchment object] DESCRIPTION. Lake : TYPE DESCRIPTION. ll_temp : TYPE, optional DESCRIPTION. The default is None. q_0 : TYPE, optional DESCRIPTION. The default is None. Returns ------- None. """ plake = Lake.MeteoData[:, 0] et = Lake.MeteoData[:, 1] t = Lake.MeteoData[:, 2] tm = Lake.MeteoData[:, 3] # lake simulation Lake.Qlake, _ = hbv_lake.simulate( plake, t, et, Lake.Parameters, [Model.Timef, Lake.CatArea, Lake.LakeArea], Lake.StageDischargeCurve, 0, init_st=Lake.InitialCond, ll_temp=tm, lake_sim=True) # qlake is in m3/sec # lake routing Lake.QlakeR = routing.Muskingum_V(Lake.Qlake, Lake.Qlake[0], Lake.Parameters[11], Lake.Parameters[12], Model.Timef) # subcatchment distrrm.RunLumpedRRM(Model) # routing lake discharge with DS cell k & x and adding to cell Q qlake = routing.Muskingum_V( Lake.QlakeR, Lake.QlakeR[0], Model.Parameters[Lake.OutflowCell[0], Lake.OutflowCell[1], 10], Model.Parameters[Lake.OutflowCell[0], Lake.OutflowCell[1], 11], Model.Timef) qlake = np.append(qlake, qlake[-1]) # both lake & Quz are in m3/s Model.quz[Lake.OutflowCell[0], Lake.OutflowCell[1], :] = Model.quz[ Lake.OutflowCell[0], Lake.OutflowCell[1], :] + qlake # run the GIS part to rout from cell to another distrrm.SpatialRouting(Model) Model.qout = Model.qout[:-1]
def Dist_HBV2(ConceptualModel, lakecell, q_lake, DEM, flow_acc, flow_acc_plan, sp_prec, sp_et, sp_temp, sp_pars, p2, init_st=None, ll_temp=None, q_0=None): """ original function """ n_steps = sp_prec.shape[ 2] + 1 # no of time steps =length of time series +1 # intiialise vector of nans to fill states dummy_states = np.empty([n_steps, 5]) # [sp,sm,uz,lz,wc] dummy_states[:] = np.nan # Get the mask mask, no_val = raster.get_mask(DEM) # shape of the fpl raster (rows, columns)-------------- rows are x and columns are y x_ext, y_ext = mask.shape # y_ext, x_ext = mask.shape # shape of the fpl raster (rows, columns)------------ should change rows are y and columns are x # Get deltas of pixel geo_trans = DEM.GetGeoTransform( ) # get the coordinates of the top left corner and cell size [x,dx,y,dy] dx = np.abs(geo_trans[1]) / 1000.0 # dx in Km dy = np.abs(geo_trans[-1]) / 1000.0 # dy in Km px_area = dx * dy # area of the cell # Enumerate the total number of pixels in the catchment tot_elem = np.sum( np.sum([ [1 for elem in mask_i if elem != no_val] for mask_i in mask ])) # get row by row and search [mask_i for mask_i in mask] # total pixel area px_tot_area = tot_elem * px_area # total area of pixels # Get number of non-value data st = [] # Spatially distributed states qlz = [] quz = [] #------------------------------------------------------------------------------ for x in range(x_ext): # no of rows st_i = [] q_lzi = [] q_uzi = [] # q_out_i = [] # run all cells in one row ---------------------------------------------------- for y in range(y_ext): # no of columns if mask[x, y] != no_val: # only for cells in the domain # Calculate the states per cell # TODO optimise for multiprocessing these loops # _, _st, _uzg, _lzg = ConceptualModel.simulate_new_model(avg_prec = sp_prec[x, y,:], _, _st, _uzg, _lzg = ConceptualModel.Simulate( prec=sp_prec[x, y, :], temp=sp_temp[x, y, :], et=sp_et[x, y, :], par=sp_pars[x, y, :], p2=p2, init_st=init_st, ll_temp=None, q_0=q_0, snow=0) #extra_out = True # append column after column in the same row ----------------- st_i.append(np.array(_st)) #calculate upper zone Q = K1*(LZ_int_1) q_lz_temp = np.array(sp_pars[x, y, 6]) * _lzg q_lzi.append(q_lz_temp) # calculate lower zone Q = k*(UZ_int_3)**(1+alpha) q_uz_temp = np.array(sp_pars[x, y, 5]) * (np.power( _uzg, (1.0 + sp_pars[x, y, 7]))) q_uzi.append(q_uz_temp) #print("total = "+str(fff)+"/"+str(tot_elem)+" cell, row= "+str(x+1)+" column= "+str(y+1) ) else: # if the cell is novalue------------------------------------- # Fill the empty cells with a nan vector st_i.append( dummy_states ) # fill all states(5 states) for all time steps = nan q_lzi.append( dummy_states[:, 0] ) # q lower zone =nan for all time steps = nan q_uzi.append( dummy_states[:, 0] ) # q upper zone =nan for all time steps = nan # store row by row-------- ---------------------------------------------------- #st.append(st_i) # state variables st.append(st_i) # state variables qlz.append(np.array(q_lzi)) # lower zone discharge mm/timestep quz.append( np.array(q_uzi)) # upper zone routed discharge mm/timestep #------------------------------------------------------------------------------ # convert to arrays st = np.array(st) qlz = np.array(qlz) quz = np.array(quz) #%% convert quz from mm/time step to m3/sec area_coef = p2[1] / px_tot_area quz = quz * px_area * area_coef / (p2[0] * 3.6) no_cells = list( set([ flow_acc_plan[i, j] for i in range(x_ext) for j in range(y_ext) if not np.isnan(flow_acc_plan[i, j]) ])) # no_cells=list(set([int(flow_acc_plan[i,j]) for i in range(x_ext) for j in range(y_ext) if flow_acc_plan[i,j] != no_val])) no_cells.sort() #%% routing lake discharge with DS cell k & x and adding to cell Q q_lake = routing.Muskingum_V(q_lake, q_lake[0], sp_pars[lakecell[0], lakecell[1], 10], sp_pars[lakecell[0], lakecell[1], 11], p2[0]) q_lake = np.append(q_lake, q_lake[-1]) # both lake & Quz are in m3/s #new quz[lakecell[0], lakecell[1], :] = quz[lakecell[0], lakecell[1], :] + q_lake #%% cells at the divider quz_routed = np.zeros_like(quz) * np.nan # for all cell with 0 flow acc put the quz for x in range(x_ext): # no of rows for y in range(y_ext): # no of columns if mask[x, y] != no_val and flow_acc_plan[x, y] == 0: quz_routed[x, y, :] = quz[x, y, :] #%% new for j in range(1, len(no_cells)): #2):# for x in range(x_ext): # no of rows for y in range(y_ext): # no of columns # check from total flow accumulation if mask[x, y] != no_val and flow_acc_plan[x, y] == no_cells[j]: # print(no_cells[j]) q_r = np.zeros(n_steps) for i in range(len(flow_acc[str(x) + "," + str(y)])): # no_cells[j] # bring the indexes of the us cell x_ind = flow_acc[str(x) + "," + str(y)][i][0] y_ind = flow_acc[str(x) + "," + str(y)][i][1] # sum the Q of the US cells (already routed for its cell) # route first with there own k & xthen sum q_r = q_r + routing.Muskingum_V( quz_routed[x_ind, y_ind, :], quz_routed[x_ind, y_ind, 0], sp_pars[x_ind, y_ind, 10], sp_pars[x_ind, y_ind, 11], p2[0]) # q=q_r # add the routed upstream flows to the current Quz in the cell quz_routed[x, y, :] = quz[x, y, :] + q_r #%% check if the max flow _acc is at the outlet # if tot_elem != np.nanmax(flow_acc_plan): # raise ("flow accumulation plan is not correct") # outlet is the cell that has the max flow_acc outlet = np.where(flow_acc_plan == np.nanmax( flow_acc_plan)) #np.nanmax(flow_acc_plan) outletx = outlet[0][0] outlety = outlet[1][0] #%% qlz = np.array([np.nanmean(qlz[:, :, i]) for i in range(n_steps) ]) # average of all cells (not routed mm/timestep) # convert Qlz to m3/sec qlz = qlz * p2[1] / (p2[0] * 3.6) # generation qout = qlz + quz_routed[outletx, outlety, :] return qout, st, quz_routed, qlz, quz
def SpatialRouting(Model): """ ==================================================================== SpatialRouting(qlz,quz,flow_acc,flow_direct,sp_pars,p2) ==================================================================== SpatialRouting method routes the discharge from cell to another following the flow direction input raster Inputs: ---------- 1-qlz: [numpy ndarray] 3D array of the lower zone discharge 2-quz: [numpy ndarray] 3D array of the upper zone discharge 3-flow_acc: [gdal.dataset] flow accumulation raster file of the catchment (clipped to the catchment only) 4-flow_direct: [gdal.dataset] flow Direction raster file of the catchment (clipped to the catchment only) 5-sp_pars: [numpy ndarray] 3D array of the parameters 6-p2: [List] list of unoptimized parameters p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step p2[1] = catchment area in km2 Outputs: ---------- 1-qout: [numpy array] 1D timeseries of discharge at the outlet of the catchment of unit m3/sec 2-quz_routed: [numpy ndarray] 3D array of the upper zone discharge accumulated and routed at each time step 3-qlz_translated: [numpy ndarray] 3D array of the lower zone discharge translated at each time step """ # # routing lake discharge with DS cell k & x and adding to cell Q # q_lake=Routing.Muskingum_V(q_lake,q_lake[0],sp_pars[lakecell[0],lakecell[1],10],sp_pars[lakecell[0],lakecell[1],11],p2[0]) # q_lake=np.append(q_lake,q_lake[-1]) # # both lake & Quz are in m3/s # #new # quz[lakecell[0],lakecell[1],:]=quz[lakecell[0],lakecell[1],:]+q_lake ### cells at the divider Model.quz_routed = np.zeros_like(Model.quz) """ lower zone discharge is going to be just translated without any attenuation in order to be able to calculate total discharge (uz+lz) at internal points in the catchment """ Model.qlz_translated = np.zeros_like(Model.quz) #*np.nan Model.Qtot = np.zeros_like(Model.quz) # for all cell with 0 flow acc put the quz for x in range(Model.rows): # no of rows for y in range(Model.cols): # no of columns if Model.FlowAccArr[ x, y] != Model.NoDataValue and Model.FlowAccArr[x, y] == 0: Model.quz_routed[x, y, :] = Model.quz[x, y, :] Model.qlz_translated[x, y, :] = Model.qlz[x, y, :] ### remaining cells for j in range(1, len(Model.acc_val)): #TODO parallelize # all cells with the same acc_val can run at the same time for x in range(Model.rows): # no of rows for y in range(Model.cols): # no of columns # check from total flow accumulation if Model.FlowAccArr[ x, y] != Model.NoDataValue and Model.FlowAccArr[ x, y] == Model.acc_val[j]: # for UZ q_uzi = np.zeros(Model.TS) # for lz qlzi = np.zeros(Model.TS) # iterate to route uz and translate lz for i in range(len( Model.FDT[str(x) + "," + str(y)])): # Model.acc_val[j] # bring the indexes of the us cell x_ind = Model.FDT[str(x) + "," + str(y)][i][0] y_ind = Model.FDT[str(x) + "," + str(y)][i][1] # sum the Q of the US cells (already routed for its cell) # route first with there own k & xthen sum q_uzi = q_uzi + routing.Muskingum_V( Model.quz_routed[x_ind, y_ind, :], Model.quz_routed[x_ind, y_ind, 0], Model.Parameters[x_ind, y_ind, 10], Model.Parameters[x_ind, y_ind, 11], Model.Timef) qlzi = qlzi + Model.qlz_translated[x_ind, y_ind, :] # add the routed upstream flows to the current Quz in the cell Model.quz_routed[x, y, :] = Model.quz[x, y, :] + q_uzi Model.qlz_translated[x, y, :] = Model.qlz[x, y, :] + qlzi outletx = Model.Outlet[0][0] outlety = Model.Outlet[1][0] Model.qout = Model.qlz_translated[ outletx, outlety, :] + Model.quz_routed[outletx, outlety, :] Model.Qtot = Model.qlz_translated + Model.quz_routed