Exemplo n.º 1
0
    def DistMaxbas1(Model):
        """
        =========================================================
              DistMaxbas1(Model)
        =========================================================
        DistMaxbas1 method rout the discharge directly to the outlet from each cell
        using triangular function

        Parameters
        ----------
        Model : TYPE
            DESCRIPTION.

        Returns
        -------
        None.

        """

        Maxbas = Model.Parameters[:, :, -1]

        for x in range(Model.rows):
            for y in range(Model.cols):
                if Model.FlowAccArr[x, y] != Model.NoDataValue:
                    Model.quz[x, y, :] = routing.TriangularRouting1(
                        Model.quz[x, y, :], Maxbas[x, y])
Exemplo n.º 2
0
    def DistMaxbas2(Model):
        """
        =========================================================
             DistMaxbas2(Model)
        =========================================================
        DistMaxbas2 method rout the discharge directly to the outlet from each cell
        using triangular function, the maxbas parameters are going to be calculated
        based on the flow path length input

        Parameters
        ----------
        Model : TYPE
            DESCRIPTION.

        Returns
        -------
        None.

        """

        MAXBAS = np.nanmax(Model.Parameters[:, :, -1])
        # replace novalue cells by nan
        Model.FPLArr[Model.FPLArr == Model.NoDataValue] = np.nan

        MaxFPL = np.nanmax(Model.FPLArr)
        MinFPL = np.nanmin(Model.FPLArr)
        #resize_fun = lambda x: np.round(((((x - min_dist)/(max_dist - min_dist))*(1*maxbas - 1)) + 1), 0)
        resize_fun = lambda x: ((((x - MinFPL) / (MaxFPL - MinFPL)) *
                                 (1 * MAXBAS - 1)) + 1)

        NormalizedFPL = resize_fun(Model.FPLArr)

        for x in range(Model.rows):
            for y in range(Model.cols):
                if not np.isnan(Model.FPLArr[
                        x, y]):  # FPLArray[x,y] != np.nan: #NoDataValue:
                    Model.quz[x, y, :] = routing.TriangularRouting2(
                        Model.quz[x, y, :], NormalizedFPL[x, y])
Exemplo n.º 3
0
    def FW1Withlake(Model, Lake, ll_temp=None, q_0=None):
        """
        ==============================================================
               FW1Withlake(Model, Lake,ll_temp=None, q_0=None)
        ==============================================================

        FW1 connects two module :
            1- The distributed rainfall-runoff module
            2- Triangular function-1 routing method
            3- Lake module

        Parameters
        ----------
        Model : TYPE
            DESCRIPTION.
        Lake : TYPE
            DESCRIPTION.
        ll_temp : TYPE, optional
            DESCRIPTION. The default is None.
        q_0 : TYPE, optional
            DESCRIPTION. The default is None.

        Returns
        -------
        None.

        """

        plake = Lake.MeteoData[:, 0]
        et = Lake.MeteoData[:, 1]
        t = Lake.MeteoData[:, 2]
        tm = Lake.MeteoData[:, 3]

        # lake simulation
        Lake.Qlake, _ = hbv_lake.simulate(
            plake,
            t,
            et,
            Lake.Parameters, [Model.Timef, Lake.CatArea, Lake.LakeArea],
            Lake.StageDischargeCurve,
            0,
            init_st=Lake.InitialCond,
            ll_temp=tm,
            lake_sim=True)

        # qlake is in m3/sec
        # lake routing
        Lake.QlakeR = routing.muskingum(Lake.Qlake, Lake.Qlake[0],
                                        Lake.Parameters[11],
                                        Lake.Parameters[12], Model.Timef)

        # subcatchment
        distrrm.RunLumpedRRM(Model)

        distrrm.DistMAXBAS(Model)

        qlz1 = np.array([
            np.nansum(Model.qlz[:, :, i])
            for i in range(Model.Parameters.shape[2] + 1)
        ])  # average of all cells (not routed mm/timestep)
        quz1 = np.array([
            np.nansum(Model.quz[:, :, i])
            for i in range(Model.Parameters.shape[2] + 1)
        ])  # average of all cells (routed mm/timestep)

        qout = qlz1 + quz1

        # qout = (qlz1 + quz1) * Model.CatArea / (Model.Timef* 3.6)

        Model.qout = qout[:-1] + Lake.QlakeR
Exemplo n.º 4
0
    def HapiWithlake(Model, Lake, ll_temp=None, q_0=None):
        """
        ============================================================
            HapiWithlake(Model, Lake,ll_temp=None, q_0=None)
        ============================================================
        HapiWithlake connects three modules the lake, the distributed
        ranfall-runoff module and spatial routing module

        Parameters
        ----------
        Model : [Catchment object]
            DESCRIPTION.
        Lake : TYPE
            DESCRIPTION.
        ll_temp : TYPE, optional
            DESCRIPTION. The default is None.
        q_0 : TYPE, optional
            DESCRIPTION. The default is None.

        Returns
        -------
        None.

        """

        plake = Lake.MeteoData[:, 0]
        et = Lake.MeteoData[:, 1]
        t = Lake.MeteoData[:, 2]
        tm = Lake.MeteoData[:, 3]

        # lake simulation
        Lake.Qlake, _ = hbv_lake.simulate(
            plake,
            t,
            et,
            Lake.Parameters, [Model.Timef, Lake.CatArea, Lake.LakeArea],
            Lake.StageDischargeCurve,
            0,
            init_st=Lake.InitialCond,
            ll_temp=tm,
            lake_sim=True)
        # qlake is in m3/sec
        # lake routing
        Lake.QlakeR = routing.Muskingum_V(Lake.Qlake, Lake.Qlake[0],
                                          Lake.Parameters[11],
                                          Lake.Parameters[12], Model.Timef)

        # subcatchment
        distrrm.RunLumpedRRM(Model)

        # routing lake discharge with DS cell k & x and adding to cell Q
        qlake = routing.Muskingum_V(
            Lake.QlakeR, Lake.QlakeR[0],
            Model.Parameters[Lake.OutflowCell[0], Lake.OutflowCell[1], 10],
            Model.Parameters[Lake.OutflowCell[0], Lake.OutflowCell[1],
                             11], Model.Timef)

        qlake = np.append(qlake, qlake[-1])
        # both lake & Quz are in m3/s
        Model.quz[Lake.OutflowCell[0], Lake.OutflowCell[1], :] = Model.quz[
            Lake.OutflowCell[0], Lake.OutflowCell[1], :] + qlake

        # run the GIS part to rout from cell to another
        distrrm.SpatialRouting(Model)

        Model.qout = Model.qout[:-1]
Exemplo n.º 5
0
    def Dist_HBV2(ConceptualModel,
                  lakecell,
                  q_lake,
                  DEM,
                  flow_acc,
                  flow_acc_plan,
                  sp_prec,
                  sp_et,
                  sp_temp,
                  sp_pars,
                  p2,
                  init_st=None,
                  ll_temp=None,
                  q_0=None):
        """
        original function
        """

        n_steps = sp_prec.shape[
            2] + 1  # no of time steps =length of time series +1
        # intiialise vector of nans to fill states
        dummy_states = np.empty([n_steps, 5])  # [sp,sm,uz,lz,wc]
        dummy_states[:] = np.nan

        # Get the mask
        mask, no_val = raster.get_mask(DEM)
        # shape of the fpl raster (rows, columns)-------------- rows are x and columns are y
        x_ext, y_ext = mask.shape
        #    y_ext, x_ext = mask.shape # shape of the fpl raster (rows, columns)------------ should change rows are y and columns are x

        # Get deltas of pixel
        geo_trans = DEM.GetGeoTransform(
        )  # get the coordinates of the top left corner and cell size [x,dx,y,dy]
        dx = np.abs(geo_trans[1]) / 1000.0  # dx in Km
        dy = np.abs(geo_trans[-1]) / 1000.0  # dy in Km
        px_area = dx * dy  # area of the cell

        # Enumerate the total number of pixels in the catchment
        tot_elem = np.sum(
            np.sum([
                [1 for elem in mask_i if elem != no_val] for mask_i in mask
            ]))  # get row by row and search [mask_i for mask_i in mask]

        # total pixel area
        px_tot_area = tot_elem * px_area  # total area of pixels

        # Get number of non-value data

        st = []  # Spatially distributed states
        qlz = []
        quz = []
        #------------------------------------------------------------------------------
        for x in range(x_ext):  # no of rows
            st_i = []
            q_lzi = []
            q_uzi = []
            #        q_out_i = []
            # run all cells in one row ----------------------------------------------------
            for y in range(y_ext):  # no of columns
                if mask[x, y] != no_val:  # only for cells in the domain
                    # Calculate the states per cell
                    # TODO optimise for multiprocessing these loops
                    #                _, _st, _uzg, _lzg = ConceptualModel.simulate_new_model(avg_prec = sp_prec[x, y,:],
                    _, _st, _uzg, _lzg = ConceptualModel.Simulate(
                        prec=sp_prec[x, y, :],
                        temp=sp_temp[x, y, :],
                        et=sp_et[x, y, :],
                        par=sp_pars[x, y, :],
                        p2=p2,
                        init_st=init_st,
                        ll_temp=None,
                        q_0=q_0,
                        snow=0)  #extra_out = True
                    # append column after column in the same row -----------------
                    st_i.append(np.array(_st))
                    #calculate upper zone Q = K1*(LZ_int_1)
                    q_lz_temp = np.array(sp_pars[x, y, 6]) * _lzg
                    q_lzi.append(q_lz_temp)
                    # calculate lower zone Q = k*(UZ_int_3)**(1+alpha)
                    q_uz_temp = np.array(sp_pars[x, y, 5]) * (np.power(
                        _uzg, (1.0 + sp_pars[x, y, 7])))
                    q_uzi.append(q_uz_temp)

                    #print("total = "+str(fff)+"/"+str(tot_elem)+" cell, row= "+str(x+1)+" column= "+str(y+1) )
                else:  # if the cell is novalue-------------------------------------
                    # Fill the empty cells with a nan vector
                    st_i.append(
                        dummy_states
                    )  # fill all states(5 states) for all time steps = nan
                    q_lzi.append(
                        dummy_states[:, 0]
                    )  # q lower zone =nan  for all time steps = nan
                    q_uzi.append(
                        dummy_states[:, 0]
                    )  # q upper zone =nan  for all time steps = nan

            # store row by row-------- ----------------------------------------------------
            #st.append(st_i) # state variables
            st.append(st_i)  # state variables
            qlz.append(np.array(q_lzi))  # lower zone discharge mm/timestep
            quz.append(
                np.array(q_uzi))  # upper zone routed discharge mm/timestep
            #------------------------------------------------------------------------------
            # convert to arrays
        st = np.array(st)
        qlz = np.array(qlz)
        quz = np.array(quz)
        #%% convert quz from mm/time step to m3/sec
        area_coef = p2[1] / px_tot_area
        quz = quz * px_area * area_coef / (p2[0] * 3.6)

        no_cells = list(
            set([
                flow_acc_plan[i, j] for i in range(x_ext) for j in range(y_ext)
                if not np.isnan(flow_acc_plan[i, j])
            ]))
        #    no_cells=list(set([int(flow_acc_plan[i,j]) for i in range(x_ext) for j in range(y_ext) if flow_acc_plan[i,j] != no_val]))
        no_cells.sort()

        #%% routing lake discharge with DS cell k & x and adding to cell Q
        q_lake = routing.Muskingum_V(q_lake, q_lake[0],
                                     sp_pars[lakecell[0], lakecell[1], 10],
                                     sp_pars[lakecell[0], lakecell[1],
                                             11], p2[0])
        q_lake = np.append(q_lake, q_lake[-1])
        # both lake & Quz are in m3/s
        #new
        quz[lakecell[0],
            lakecell[1], :] = quz[lakecell[0], lakecell[1], :] + q_lake
        #%% cells at the divider
        quz_routed = np.zeros_like(quz) * np.nan
        # for all cell with 0 flow acc put the quz
        for x in range(x_ext):  # no of rows
            for y in range(y_ext):  # no of columns
                if mask[x, y] != no_val and flow_acc_plan[x, y] == 0:
                    quz_routed[x, y, :] = quz[x, y, :]
        #%% new
        for j in range(1, len(no_cells)):  #2):#
            for x in range(x_ext):  # no of rows
                for y in range(y_ext):  # no of columns
                    # check from total flow accumulation
                    if mask[x,
                            y] != no_val and flow_acc_plan[x,
                                                           y] == no_cells[j]:
                        #                        print(no_cells[j])
                        q_r = np.zeros(n_steps)
                        for i in range(len(flow_acc[str(x) + "," +
                                                    str(y)])):  #  no_cells[j]
                            # bring the indexes of the us cell
                            x_ind = flow_acc[str(x) + "," + str(y)][i][0]
                            y_ind = flow_acc[str(x) + "," + str(y)][i][1]
                            # sum the Q of the US cells (already routed for its cell)
                            # route first with there own k & xthen sum
                            q_r = q_r + routing.Muskingum_V(
                                quz_routed[x_ind, y_ind, :],
                                quz_routed[x_ind, y_ind,
                                           0], sp_pars[x_ind, y_ind, 10],
                                sp_pars[x_ind, y_ind, 11], p2[0])
    #                        q=q_r
    # add the routed upstream flows to the current Quz in the cell
                        quz_routed[x, y, :] = quz[x, y, :] + q_r
        #%% check if the max flow _acc is at the outlet

    #    if tot_elem != np.nanmax(flow_acc_plan):
    #        raise ("flow accumulation plan is not correct")
    # outlet is the cell that has the max flow_acc
        outlet = np.where(flow_acc_plan == np.nanmax(
            flow_acc_plan))  #np.nanmax(flow_acc_plan)
        outletx = outlet[0][0]
        outlety = outlet[1][0]
        #%%
        qlz = np.array([np.nanmean(qlz[:, :, i]) for i in range(n_steps)
                        ])  # average of all cells (not routed mm/timestep)
        # convert Qlz to m3/sec
        qlz = qlz * p2[1] / (p2[0] * 3.6)  # generation

        qout = qlz + quz_routed[outletx, outlety, :]

        return qout, st, quz_routed, qlz, quz
Exemplo n.º 6
0
    def SpatialRouting(Model):
        """
        ====================================================================
          SpatialRouting(qlz,quz,flow_acc,flow_direct,sp_pars,p2)
        ====================================================================
        SpatialRouting method routes the discharge from cell to another following
        the flow direction input raster

        Inputs:
        ----------
            1-qlz:
                [numpy ndarray] 3D array of the lower zone discharge
            2-quz:
                [numpy ndarray] 3D array of the upper zone discharge
            3-flow_acc:
                [gdal.dataset] flow accumulation raster file of the catchment (clipped to the catchment only)
            4-flow_direct:
                [gdal.dataset] flow Direction raster file of the catchment (clipped to the catchment only)
            5-sp_pars:
                [numpy ndarray] 3D array of the parameters
            6-p2:
                [List] list of unoptimized parameters
                p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step
                p2[1] = catchment area in km2

        Outputs:
        ----------
            1-qout:
                [numpy array] 1D timeseries of discharge at the outlet of the catchment
                of unit m3/sec
            2-quz_routed:
                [numpy ndarray] 3D array of the upper zone discharge  accumulated and
                routed at each time step
            3-qlz_translated:
                [numpy ndarray] 3D array of the lower zone discharge translated at each time step
        """
        #    # routing lake discharge with DS cell k & x and adding to cell Q
        #    q_lake=Routing.Muskingum_V(q_lake,q_lake[0],sp_pars[lakecell[0],lakecell[1],10],sp_pars[lakecell[0],lakecell[1],11],p2[0])
        #    q_lake=np.append(q_lake,q_lake[-1])
        #    # both lake & Quz are in m3/s
        #    #new
        #    quz[lakecell[0],lakecell[1],:]=quz[lakecell[0],lakecell[1],:]+q_lake

        ### cells at the divider
        Model.quz_routed = np.zeros_like(Model.quz)
        """
        lower zone discharge is going to be just translated without any attenuation
        in order to be able to calculate total discharge (uz+lz) at internal points
        in the catchment
        """
        Model.qlz_translated = np.zeros_like(Model.quz)  #*np.nan
        Model.Qtot = np.zeros_like(Model.quz)
        # for all cell with 0 flow acc put the quz
        for x in range(Model.rows):  # no of rows
            for y in range(Model.cols):  # no of columns
                if Model.FlowAccArr[
                        x,
                        y] != Model.NoDataValue and Model.FlowAccArr[x,
                                                                     y] == 0:
                    Model.quz_routed[x, y, :] = Model.quz[x, y, :]
                    Model.qlz_translated[x, y, :] = Model.qlz[x, y, :]

        ### remaining cells
        for j in range(1, len(Model.acc_val)):
            #TODO parallelize
            # all cells with the same acc_val can run at the same time
            for x in range(Model.rows):  # no of rows
                for y in range(Model.cols):  # no of columns
                    # check from total flow accumulation
                    if Model.FlowAccArr[
                            x, y] != Model.NoDataValue and Model.FlowAccArr[
                                x, y] == Model.acc_val[j]:
                        # for UZ
                        q_uzi = np.zeros(Model.TS)
                        # for lz
                        qlzi = np.zeros(Model.TS)
                        # iterate to route uz and translate lz
                        for i in range(len(
                                Model.FDT[str(x) + "," +
                                          str(y)])):  #  Model.acc_val[j]
                            # bring the indexes of the us cell
                            x_ind = Model.FDT[str(x) + "," + str(y)][i][0]
                            y_ind = Model.FDT[str(x) + "," + str(y)][i][1]
                            # sum the Q of the US cells (already routed for its cell)
                            # route first with there own k & xthen sum
                            q_uzi = q_uzi + routing.Muskingum_V(
                                Model.quz_routed[x_ind, y_ind, :],
                                Model.quz_routed[x_ind, y_ind, 0],
                                Model.Parameters[x_ind, y_ind, 10],
                                Model.Parameters[x_ind, y_ind,
                                                 11], Model.Timef)
                            qlzi = qlzi + Model.qlz_translated[x_ind, y_ind, :]

                        # add the routed upstream flows to the current Quz in the cell
                        Model.quz_routed[x, y, :] = Model.quz[x, y, :] + q_uzi
                        Model.qlz_translated[x,
                                             y, :] = Model.qlz[x, y, :] + qlzi

        outletx = Model.Outlet[0][0]
        outlety = Model.Outlet[1][0]

        Model.qout = Model.qlz_translated[
            outletx, outlety, :] + Model.quz_routed[outletx, outlety, :]
        Model.Qtot = Model.qlz_translated + Model.quz_routed