def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) self.rnns = model_param['n_hidden'] self.film_dim = model_param['film_dim'] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.n_hs = model_param['n_hidden'] + [int(self.orch_dim)] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.n_hs = model_param['n_hidden'] self.static_bias = compute_static_bias_initialization(model_param['activation_ratio']) return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.n_hidden = model_param['n_hidden'] self.n_visible = self.orch_dim self.n_condition = self.orch_dim * (self.temporal_order-1)+ self.piano_dim self.Gibbs_steps = model_param["Gibbs_steps"] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.layers = model_param['n_hidden'] # Number of different ordering when sampling self.num_ordering = model_param['num_ordering'] # Is it a keras model ? self.keras = True return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.n_hs = model_param['n_hidden'] self.n_hs_piano = model_param['n_hidden_piano'] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Stack conv self.filters = model_param["num_filter_piano"] self.kernels = model_param["kernel_size_piano"] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.layers = [self.piano_dim] + list(model_param['n_hidden']) # Is it a keras model ? self.keras = False return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Architecture self.layers = model_param['n_hidden'] self.recurrent_layers = model_param['n_hidden'] # Is it a keras model ? self.keras = True # Will be computed later self.context_embedding_size = None return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.n_hs = model_param['n_hidden'] self.num_filter = model_param['num_filter'] self.filter_size = model_param['filter_size'] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.MLP_piano_emb = model_param['MLP_piano_emb'] self.GRU_orch_emb = model_param['GRU_orch_emb'] self.last_MLP = model_param['last_MLP'] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.layers = model_param['n_hidden'] # Is it a keras model ? self.keras = True return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.layers = model_param['n_hidden'] # Number of different ordering when sampling self.num_ordering = model_param['num_ordering'] # Is it a keras model ? self.keras = True # Will be computed later self.context_embedding_size = None return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Architecture self.mlp_piano_present = model_param['mlp_piano_present'] self.recurrent_layers = model_param['recurrent_layers'] self.mlp_orch_present = model_param['mlp_orch_present'] self.mlp_last_pred = model_param['mlp_last_pred'] # Is it a keras model ? self.keras = True # Will be computed later self.context_embedding_size = None return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) self.num_filter_piano = model_param["num_filter_piano"] self.kernel_size_piano = model_param["kernel_size_piano"] self.num_filter_orch = model_param["num_filter_orch"] self.kernel_size_orch = model_param["kernel_size_orch"] self.embeddings_size = model_param["embeddings_size"] # The last recurrent layer output a vector of dimension embedding size self.gru_orch = list(model_param["gru_orch"]) self.gru_orch.append(self.embeddings_size) self.mlp_pred = model_param["mlp_pred"] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.n_h = model_param['n_hidden'] self.n_v = self.orch_dim self.n_c = self.orch_dim * (self.temporal_order-1) self.n_l = self.piano_dim self.n_f = model_param["n_factor"] self.n_fv = model_param["n_factor"] self.n_fh = model_param["n_factor"] self.Gibbs_steps = model_param["Gibbs_steps"] return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) self.num_filter_piano = model_param["num_filter_piano"] self.kernel_size_piano = model_param["kernel_size_piano"] self.mlp_piano = model_param["mlp_piano"] self.mlp_pred = model_param["mlp_pred"] self.gru_orch = model_param["gru_orch"] # Is it a keras model ? self.keras = True return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Architecture self.mlp_piano_present = model_param['mlp_piano_present'] self.recurrent_layers = model_param['recurrent_layers'] self.mlp_orch_present = model_param['mlp_orch_present'] self.mlp_last_pred = model_param['mlp_last_pred'] # Is it a keras model ? self.keras = True # Will be computed later self.context_embedding_size = None # Static bias self.static_bias = compute_static_bias_initialization( model_param['activation_ratio']) return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) return
def __init__(self, model_param, dimensions): Model_lop.__init__(self, model_param, dimensions) # Hidden layers architecture self.n_hidden = model_param['n_hidden'] self.Gibbs_steps = model_param["Gibbs_steps"] return