Exemplo n.º 1
0
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)
        self.rnns = model_param['n_hidden']
        self.film_dim = model_param['film_dim']

        return
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)
        # Hidden layers architecture
        self.n_hs = model_param['n_hidden'] + [int(self.orch_dim)]

        return
 def __init__(self, model_param, dimensions):
     Model_lop.__init__(self, model_param, dimensions)
     # Hidden layers architecture
     self.n_hs = model_param['n_hidden']
     self.static_bias = compute_static_bias_initialization(model_param['activation_ratio'])
     
     return
Exemplo n.º 4
0
 def __init__(self, model_param, dimensions):
     Model_lop.__init__(self, model_param, dimensions)
     # Hidden layers architecture
     self.n_hidden = model_param['n_hidden']
     self.n_visible = self.orch_dim
     self.n_condition = self.orch_dim * (self.temporal_order-1)+ self.piano_dim
     self.Gibbs_steps = model_param["Gibbs_steps"]
     return
Exemplo n.º 5
0
	def __init__(self, model_param, dimensions):
		Model_lop.__init__(self, model_param, dimensions)
		# Hidden layers architecture
		self.layers = model_param['n_hidden']
		# Number of different ordering when sampling
		self.num_ordering = model_param['num_ordering']
		# Is it a keras model ?
		self.keras = True
		return
Exemplo n.º 6
0
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)

        # Hidden layers architecture
        self.n_hs = model_param['n_hidden']
        self.n_hs_piano = model_param['n_hidden_piano']

        return
Exemplo n.º 7
0
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)

        # Stack conv
        self.filters = model_param["num_filter_piano"]
        self.kernels = model_param["kernel_size_piano"]

        return
Exemplo n.º 8
0
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)

        # Hidden layers architecture
        self.layers = [self.piano_dim] + list(model_param['n_hidden'])
        # Is it a keras model ?
        self.keras = False

        return
 def __init__(self, model_param, dimensions):
     Model_lop.__init__(self, model_param, dimensions)
     # Architecture
     self.layers = model_param['n_hidden']
     self.recurrent_layers = model_param['n_hidden']
     # Is it a keras model ?
     self.keras = True
     # Will be computed later
     self.context_embedding_size = None
     return
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)

        # Hidden layers architecture
        self.n_hs = model_param['n_hidden']
        self.num_filter = model_param['num_filter']
        self.filter_size = model_param['filter_size']

        return
Exemplo n.º 11
0
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)

        # Hidden layers architecture
        self.MLP_piano_emb = model_param['MLP_piano_emb']
        self.GRU_orch_emb = model_param['GRU_orch_emb']
        self.last_MLP = model_param['last_MLP']

        return
Exemplo n.º 12
0
	def __init__(self, model_param, dimensions):

		Model_lop.__init__(self, model_param, dimensions)

		# Hidden layers architecture
		self.layers = model_param['n_hidden']
		# Is it a keras model ?
		self.keras = True

		return
Exemplo n.º 13
0
 def __init__(self, model_param, dimensions):
     Model_lop.__init__(self, model_param, dimensions)
     # Hidden layers architecture
     self.layers = model_param['n_hidden']
     # Number of different ordering when sampling
     self.num_ordering = model_param['num_ordering']
     # Is it a keras model ?
     self.keras = True
     # Will be computed later
     self.context_embedding_size = None
     return
Exemplo n.º 14
0
 def __init__(self, model_param, dimensions):
     Model_lop.__init__(self, model_param, dimensions)
     # Architecture
     self.mlp_piano_present = model_param['mlp_piano_present']
     self.recurrent_layers = model_param['recurrent_layers']
     self.mlp_orch_present = model_param['mlp_orch_present']
     self.mlp_last_pred = model_param['mlp_last_pred']
     # Is it a keras model ?
     self.keras = True
     # Will be computed later
     self.context_embedding_size = None
     return
Exemplo n.º 15
0
 def __init__(self, model_param, dimensions):
     Model_lop.__init__(self, model_param, dimensions)
     self.num_filter_piano = model_param["num_filter_piano"]
     self.kernel_size_piano = model_param["kernel_size_piano"]
     self.num_filter_orch = model_param["num_filter_orch"]
     self.kernel_size_orch = model_param["kernel_size_orch"]
     self.embeddings_size = model_param["embeddings_size"]
     # The last recurrent layer output a vector of dimension embedding size
     self.gru_orch = list(model_param["gru_orch"])
     self.gru_orch.append(self.embeddings_size)
     self.mlp_pred = model_param["mlp_pred"]
     return
Exemplo n.º 16
0
    def __init__(self, model_param, dimensions):
        Model_lop.__init__(self, model_param, dimensions)
        # Hidden layers architecture
        self.n_h = model_param['n_hidden']
        self.n_v = self.orch_dim
        self.n_c = self.orch_dim * (self.temporal_order-1)
        self.n_l = self.piano_dim
        self.n_f = model_param["n_factor"]

        self.n_fv = model_param["n_factor"]
        self.n_fh = model_param["n_factor"]

        self.Gibbs_steps = model_param["Gibbs_steps"]
        return
Exemplo n.º 17
0
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)

        self.num_filter_piano = model_param["num_filter_piano"]
        self.kernel_size_piano = model_param["kernel_size_piano"]
        self.mlp_piano = model_param["mlp_piano"]
        self.mlp_pred = model_param["mlp_pred"]
        self.gru_orch = model_param["gru_orch"]

        # Is it a keras model ?
        self.keras = True

        return
 def __init__(self, model_param, dimensions):
     Model_lop.__init__(self, model_param, dimensions)
     # Architecture
     self.mlp_piano_present = model_param['mlp_piano_present']
     self.recurrent_layers = model_param['recurrent_layers']
     self.mlp_orch_present = model_param['mlp_orch_present']
     self.mlp_last_pred = model_param['mlp_last_pred']
     # Is it a keras model ?
     self.keras = True
     # Will be computed later
     self.context_embedding_size = None
     # Static bias
     self.static_bias = compute_static_bias_initialization(
         model_param['activation_ratio'])
     return
Exemplo n.º 19
0
    def __init__(self, model_param, dimensions):

        Model_lop.__init__(self, model_param, dimensions)

        return
Exemplo n.º 20
0
 def __init__(self, model_param, dimensions):
     Model_lop.__init__(self, model_param, dimensions)
     # Hidden layers architecture
     self.n_hidden = model_param['n_hidden']
     self.Gibbs_steps = model_param["Gibbs_steps"]
     return