def loadModel(): global nnet, textDetector, rectDetector, optionsDetector try: # Initialize npdetector with default configuration file. nnet = Detector(MASK_RCNN_DIR, MASK_RCNN_LOG_DIR) nnet.loadModel("latest") rectDetector = RectDetector() optionsDetector = OptionsDetector() optionsDetector.load("latest") # Initialize text detector. textDetector = TextDetector.get_static_module("eu")() textDetector.load("latest") return True except: return False
def __init__(self, NOMEROFF_NET_DIR, MASK_RCNN_DIR, MASK_RCNN_LOG_DIR, load_model="latest", options_detector="latest", text_detector_module="eu", load_text_detector="latest"): sys.path.append(NOMEROFF_NET_DIR) # Initialize npdetector with default configuration file. self.nnet = Detector(MASK_RCNN_DIR, MASK_RCNN_LOG_DIR) self.nnet.loadModel(load_model) self.rectDetector = RectDetector() self.optionsDetector = OptionsDetector() self.optionsDetector.load(options_detector) # Initialize text detector. self.textDetector = TextDetector.get_static_module( text_detector_module)() self.textDetector.load(load_text_detector)
import os import numpy as np import sys import matplotlib.image as mpimg import tensorflow as tf from NomeroffNet import filters, RectDetector, TextDetector, OptionsDetector, Detector, textPostprocessing, \ textPostprocessingAsync os.environ['CUDA_VISIBLE_DEVICES'] = '-1' if __name__ == "__main__": print('npdetector with default configuration file') nnet = Detector() nnet.loadModel("latest") print('Initialize Rect Detector') rectDetector = RectDetector() print('Initialize Options Detector') optionsDetector = OptionsDetector() optionsDetector.load("latest") print('Initialize text detector') textDetector = TextDetector({ "eu_ua_2004_2015": { "for_regions": ["eu_ua_2015", "eu_ua_2004"], "model_path": "latest" }, "eu_ua_1995": {
NOMEROFF_NET_DIR = os.path.abspath('../../') # specify the path to Mask_RCNN if you placed it outside Nomeroff-net project MASK_RCNN_DIR = os.path.join(NOMEROFF_NET_DIR, 'Mask_RCNN') MASK_RCNN_LOG_DIR = "../../logs/" MASK_RCNN_MODEL_PATH = "../../models/mask_rcnn_numberplate_0700.pb" OPTIONS_MODEL_PATH = "../../models/numberplate_options_2019_2_15.pb" OCR_NP_UKR_TEXT = "../../models/anpr_ocr_ua_1_2_11-cpu.pb" OCR_NP_EU_TEXT = "../../models/anpr_ocr_eu_2-cpu.pb" sys.path.append(NOMEROFF_NET_DIR) from NomeroffNet import filters, RectDetector, TextDetector, OptionsDetector, Detector, textPostprocessingAsync nnet = Detector(MASK_RCNN_DIR, MASK_RCNN_LOG_DIR) nnet.load(MASK_RCNN_MODEL_PATH) rectDetector = RectDetector() optionsDetector = OptionsDetector() optionsDetector.load(OPTIONS_MODEL_PATH) # Initialize text detector. textDetector = TextDetector({ "eu_ua_2014_2015": { "for_regions": ["eu_ua_2015", "eu_ua_2004"], "model_path": OCR_NP_UKR_TEXT }, "eu": { "for_regions": ["eu", "eu_ua_1995"],
import sys from colorama import Fore import matplotlib.image as mpimg from settings import Settings as cfg import services.timeChecker as tm import os sys.path.append(cfg.NOMEROFF_NET_DIR) from NomeroffNet import filters, RectDetector, TextDetector, OptionsDetector, Detector, textPostprocessing nnet = Detector(cfg.MASK_RCNN_DIR, cfg.MASK_RCNN_LOG_DIR) nnet.loadModel("latest") rectDetector = RectDetector() optionsDetector = OptionsDetector() optionsDetector.load("latest") textDetector = TextDetector.get_static_module("ru")() textDetector.load("latest") def car_detect(pathToImageDir): carNumbers = [] for obj in os.listdir(pathToImageDir): # смысл этого всего в том, что я не понял как передавать изобраджение матрицей от моего алгоритма к этому, поэтому сохраняю объект картинкой, работаю с ним и удаляю if "car" in obj: name = str(obj).replace(" ", ",") carNumber = detectCarNumber(os.path.join(pathToImageDir, name)) # мы сохраняем файлы с найденными объектами, а потом юзаем их # решение такое себе, т.к. мы обращаемся к долгой памяти carNumbers.append(carNumber) print(Fore.LIGHTBLUE_EX + str(carNumber)) return carNumbers
def main(ss): trigger = datetime.time(hour=10, minute=0, second=0, microsecond=0) # specify the path to Mask_RCNN if you placed it outside Nomeroff-net project NOMEROFF_NET_DIR = os.path.abspath('../') MASK_RCNN_DIR = os.path.join(NOMEROFF_NET_DIR, 'Mask_RCNN') MASK_RCNN_LOG_DIR = os.path.join(NOMEROFF_NET_DIR, 'logs') MASK_RCNN_MODEL_PATH = os.path.join( NOMEROFF_NET_DIR, "models/mask_rcnn_numberplate_0700.h5") OPTIONS_MODEL_PATH = os.path.join( NOMEROFF_NET_DIR, "models/numberplate_options_2019_03_05.h5") # If you use gpu version tensorflow please change model to gpu version named like *-gpu.pb mode = "gpu" OCR_NP_RU_TEXT = os.path.join(NOMEROFF_NET_DIR, "models/anpr_ocr_ru_3-{}.h5".format(mode)) sys.path.append(NOMEROFF_NET_DIR) # Import license plate recognition tools. from NomeroffNet import filters, RectDetector, TextDetector, OptionsDetector, Detector, textPostprocessing # Initialize npdetector with default configuration file. nnet = Detector(MASK_RCNN_DIR, MASK_RCNN_LOG_DIR) # Load weights in keras format. nnet.loadModel(MASK_RCNN_MODEL_PATH) # Initialize rect detector with default configuration file. rectDetector = RectDetector() # Initialize text detector. # Also you may use gpu version models. textDetector = TextDetector( {"ru": { "for_regions": ["ru"], "model_path": OCR_NP_RU_TEXT }}) # Initialize train detector. optionsDetector = OptionsDetector() optionsDetector.load(OPTIONS_MODEL_PATH) script_dir = os.path.dirname(os.path.realpath(__file__)) main_directory = os.path.join(script_dir, "data") if not os.path.exists(main_directory): os.makedirs(main_directory) car_snapshot = len(os.listdir(main_directory)) print(car_snapshot) caffe_net_filepath = os.path.join(script_dir, 'MobileNetSSD_deploy.caffemodel') caffe_net_filepath = os.path.abspath(caffe_net_filepath) proto_filepath = os.path.join(script_dir, 'MobileNetSSD_deploy.prototxt.txt') proto_filepath = os.path.abspath(proto_filepath) car_net = cv2.dnn.readNetFromCaffe(proto_filepath, caffe_net_filepath) CLASSES = [ "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" ] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) limit_for_confidence = 0.7 number_cascade = cv2.CascadeClassifier( 'haarcascade_russian_plate_number.xml') src0 = 'rtsp://...' # outside camera src1 = 'rtsp://...' # inside camera inc_capture = VideoCaptureAsync(src0).start() out_capture = VideoCaptureAsync(src1).start() time.sleep(3.0) application = MyWindow(sock=ss) application.show() flag_cnt = False flag_outside = False start_save = True clear_log_files = dt.month # clear logging every month cnt = 0 file = open(script_dir + "/found_numbers.txt", 'a') while True: # clear history every month if dt.month != clear_log_files: clear_log_files = dt.month with open(script_dir + "/found_numbers.txt", 'w'): pass for the_file in os.listdir(main_directory): file_path = os.path.join(main_directory, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) except Exception as e: print(e) # getting the frame from incoming camera and frame preprocessing try: _, frame = inc_capture.read() except AttributeError: print("Incoming camera isn't responding") break frame = resize(frame, width=720) # Crop the ROI height_frame, width_frame = frame.shape[:2] frame = frame[int(0.3 * height_frame):height_frame, 0:width_frame] # if we get the frame in grayscale format (night mode enable) - convert it to bgr try: frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR) except cv2.error: pass # getting the frame from outcoming camera and frame preprocessing try: _, shot = out_capture.read() except AttributeError: print("Outcoming camera isn't responding") break shot = resize(shot, width=720) # Crop the ROI height_shot, width_shot = shot.shape[:2] shot = shot[int(0.3 * height_shot):height_shot, 0:width_shot] # if we get the frame in grayscale format (night mode enable) - convert it to bgr try: shot = cv2.cvtColor(shot, cv2.COLOR_GRAY2BGR) except cv2.error: pass copy_frame = frame.copy() copy_shot = shot.copy() # Pass the blob through the network and obtain the detections and predictions (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5) car_net.setInput(blob) detections = car_net.forward() (H, W) = shot.shape[:2] blobbed = cv2.dnn.blobFromImage(cv2.resize(shot, (300, 300)), 0.007843, (300, 300), 127.5) car_net.setInput(blobbed) discoveries = car_net.forward() number_plate = '' # analyze incoming camera frame for ind in np.arange(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with the predictions confidence = detections[0, 0, ind, 2] # Filter out weak detections by ensuring the confidence is greater than # the minimum confidence if confidence > limit_for_confidence: # Extract the index of the class labels from detections, then compute # the (x, y)-coordinates of the bounding box for the object idx = int(detections[0, 0, ind, 1]) box = detections[0, 0, ind, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # Draw the bounding boxes for everything car if CLASSES[idx] == 'car': label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) car_frame = frame[startY:endY, startX:endX] car_number = car_frame.copy() # looking for a license plate on car frame plaques = [] plaques = number_cascade.detectMultiScale(car_number, scaleFactor=1.3, minNeighbors=4) # if any license plate has been found - try to recognize its if len(plaques) > 0 and flag_cnt is False: start = time.time() try: car_number = resize(car_number, width=1080) except cv2.error: print('cv2 error') except ZeroDivisionError: print('zero division') try: NP = nnet.detect([car_number]) # Generate image mask. cv_img_masks = filters.cv_img_mask(NP) # Detect points. arrPoints = rectDetector.detect(cv_img_masks) zones = rectDetector.get_cv_zonesBGR( car_number, arrPoints) # find standart # Added a classifier (isHiddenIds) for determining the fact of hide text of number, # in order not to recognize a deliberately damaged license plate image. regionIds, isHiddenIds = optionsDetector.predict( zones) regionNames = optionsDetector.getRegionLabels( regionIds) # find text with postprocessing by standart textArr = textDetector.predict(zones, regionNames) textArr = textPostprocessing(textArr, regionNames) number_plate = ''.join(textArr) for (xx, yy, ww, hh) in plaques: cv2.rectangle( copy_frame, (startX + xx, startY + yy), (startX + xx + ww, startY + yy + hh), (0, 0, 255), 2) # if license plate has been recognized - compare the number with white numbers if len(number_plate) > 0: print(number_plate) # if not flag_cnt: flag, show = check_whitelist(number_plate) if not flag: sending_flag = send_message(b'2', ss) if show is not None: application.ui.carNumber.setText( 'Номер:' + number_plate) application.ui.carNumber.adjustSize() if sending_flag: application.ui.barrierStatus.setText( 'Шлагбаум: открыт') application.ui.barrierStatus.adjustSize( ) flag_cnt = True else: application.ui.barrierStatus.setText( 'Команда \nне принята') application.ui.barrierStatus.adjustSize( ) except ZeroDivisionError: print('zero') except RecursionError: print('Recursion Error') finish = time.time() print(finish - start, 'at:', datetime.datetime.now(), sep=' ') y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(copy_frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) # analyze outcoming camera frame for index in np.arange(0, discoveries.shape[2]): # extract the confidence (i.e., probability) associated with the predictions confidence = discoveries[0, 0, index, 2] # Filter out weak detections by ensuring the confidence is greater than # the minimum confidence if confidence > limit_for_confidence: # Extract the index of the class labels from detections, then compute # the (x, y)-coordinates of the bounding box for the object idx = int(discoveries[0, 0, index, 1]) box = discoveries[0, 0, index, 3:7] * np.array([W, H, W, H]) (startX, startY, endX, endY) = box.astype("int") # Draw the bounding boxes for everything car if CLASSES[idx] == 'car': # heightShot, widthShot = shot.shape[:2] label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) car_shot = shot[startY:endY, startX:endX] car_area = car_shot.copy() height_car, width_car = car_area.shape[:2] # cv2.rectangle(frame, (startX, startY), (endX, endY), # COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(copy_shot, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) if not flag_cnt: if height_car > 0.3 * H or width_car > 0.3 * W: if not flag_outside: sending_flag = send_message(b'2', ss) if sending_flag: application.ui.outCar.setText( "Авто на выезде: да") application.ui.outCar.adjustSize() application.ui.barrierStatus.setText( 'Шлагбаум: открыт') application.ui.barrierStatus.adjustSize() flag_outside = True else: application.ui.barrierStatus.setText( 'Команда \nне принята') application.ui.barrierStatus.adjustSize() flag_cnt = True if start_save: if len(number_plate) > 0: number_with_time = str(number_plate) + " at: " + str(dt.now()) file.write("%s\n" % str(number_with_time)) car_snapshot += 1 cv2.imwrite(main_directory + "/" + str(car_snapshot) + ".jpg", frame) # time.sleep(5.0) print("The frame has been saved") cv2.imshow('Incoming', copy_frame) cv2.imshow('Outcoming', copy_shot) time.sleep(0.2) if cv2.waitKey(1) & 0xFF == ord('q'): break if close_flag: break # while flag_cnt is True: if flag_cnt: cnt += 1 # time.sleep(1.0) if cnt > 100: sending_flag = send_message(b'1', ss) if sending_flag: application.ui.barrierStatus.setText('Шлагбаум: закрыт') application.ui.outCar.setText("Авто на выезде: нет") application.ui.outCar.adjustSize() application.ui.barrierStatus.adjustSize() flag_outside = False flag_cnt = False else: application.ui.barrierStatus.setText( 'Команда \nне принята') application.ui.barrierStatus.adjustSize() cnt = 0 # release all cameras inc_capture.__exit__() out_capture.__exit__() file.close() cv2.destroyAllWindows()