import glob import matplotlib.image as mpimg import matplotlib.pyplot as plt # NomeroffNet path NOMEROFF_NET_DIR = os.path.abspath('../../') sys.path.append(NOMEROFF_NET_DIR) # Import license plate recognition tools. from NomeroffNet import Detector from NomeroffNet import filters # load model nnet = Detector() nnet.loadModel(NOMEROFF_NET_DIR) # Walking through the ./examples/images/ directory and checking each of the images for license plates. rootDir = '../images/*' imgs = [mpimg.imread(img_path) for img_path in glob.glob(rootDir)] cv_imgs_masks = nnet.detect_mask(imgs) for img, cv_img_masks in zip(imgs, cv_imgs_masks): # Generate splashs. splashs = filters.color_splash(img, cv_img_masks) for splash in splashs: plt.imshow(splash) plt.axis("off") plt.show()
nnet = Detector() nnet.loadModel(NOMEROFF_NET_DIR) # Detect numberplate # img_path = 'images/example2.jpeg' # img_path = '/usr/src/app/src/nomeroff-net/examples/images/example2.jpeg' # img_path = '/usr/src/app/src/nomeroff-net/examples/images/example3.jpg' for filename in glob.glob('/usr/src/app/src/nomeroff-net/cars/*'): print(filename) img = mpimg.imread(filename) # Generate image mask. cv_imgs_masks = nnet.detect_mask([img]) for cv_img_masks in cv_imgs_masks: # Detect points. arrPoints = rectDetector.detect(cv_img_masks) # cut zones zones = rectDetector.get_cv_zonesBGR(img, arrPoints, 64, 295) # find standart regionIds, stateIds, countLines = optionsDetector.predict(zones) regionNames = optionsDetector.getRegionLabels(regionIds) # find text with postprocessing by standart textArr = textDetector.predict(zones) textArr = textPostprocessing(textArr, regionNames)