Exemple #1
0
 def test_run_method_hand_drawn_circle(self):
     #
     #get a list of points
     #
     folder_script = os.path.dirname(__file__)
     filename_input = "NoisyCircle-HandDrawn-001.png"
     file_noisy_line = os.path.join(folder_script, "./data/",
                                    filename_input)
     np_image = skimage.io.imread(file_noisy_line, as_gray=True)
     lst_points = Util.create_points_from_numpyimage(np_image)
     #
     #initialize RansalHelper
     #
     helper = RansacCircleHelper()
     helper.threshold_error = 20
     helper.threshold_inlier_count = 5
     helper.add_points(lst_points)
     best_model = helper.run()
     #
     #Superimpose the new line over the image
     #
     self.superimpose_circle_over_original_image(file_noisy_line,
                                                 best_model)
     #
     #Assertions
     #
     delta = 15
     self.assertAlmostEqual(best_model.X, 89, delta=delta)
     self.assertAlmostEqual(best_model.Y, 78, delta=delta)
     self.assertAlmostEqual(best_model.R, 45, delta=delta)
    def test_large_circle_50X50_no_noise_1(self):
        folder_script=os.path.dirname(__file__)
        filename_input="NoisyCircle_x_-10_y_-14.png"
        file_noisy_line=os.path.join(folder_script,"./data/",filename_input)
        np_image=skimage.io.imread(file_noisy_line,as_gray=True)
        lst_points=Util.create_points_from_numpyimage(np_image)

        helper=BullockCircleFitting(lst_points)
        result:CircleModel =helper.FindBestFittingCircle()
        #
        #Superimpose the new line over the image
        #
        folder_results=os.path.join(folder_script,"../out/")
        count_of_files=len(os.listdir(folder_results))
        filename_results=("%s.%d.png" % (__name__,count_of_files) )
        file_result=os.path.join(folder_results,filename_results)
        new_points=CircleModel.generate_points_from_circle(result)
        np_superimposed=Util.superimpose_points_on_image(np_image,new_points,100,255,100)
        skimage.io.imsave(file_result,np_superimposed)

        delta=2
        self.assertAlmostEquals(result.R, 48.0, delta=delta);
        self.assertAlmostEquals(result.X, -10.0, delta=delta);
        self.assertAlmostEquals(result.Y, -14.0, delta=delta);
        pass
Exemple #3
0
 def test_run_method_LargeCircle1_50X50_NoNoise(self):
     #
     #get a list of points
     #
     folder_script = os.path.dirname(__file__)
     filename_input = "NoisyCircle_x_-10_y_-14.png"
     file_noisy_circle = os.path.join(folder_script, "./data/",
                                      filename_input)
     np_image = skimage.io.imread(file_noisy_circle, as_gray=True)
     lst_points = Util.create_points_from_numpyimage(np_image)
     #
     #initialize RansalHelper
     #
     helper = RansacCircleHelper()
     helper.gradient_descent_max_iterations = 1000
     helper.learning_rate = 0.3
     helper.threshold_error = 5
     helper.threshold_inlier_count = 15
     #helper.max_iterations=400 #100
     helper.add_points(lst_points)
     best_model = helper.run()
     self.superimpose_circle_over_original_image(file_noisy_circle,
                                                 best_model)
     #
     #Assertions
     #
     delta = 15
     self.assertAlmostEqual(best_model.X, -2, delta=delta)
     self.assertAlmostEqual(best_model.Y, -5, delta=delta)
     self.assertAlmostEqual(best_model.R, 37, delta=delta)
     pass
Exemple #4
0
    def test_large_circle_50X50_no_noise_2(self):
        folder_script = os.path.dirname(__file__)
        filename_input = "NoisyCircle_x_6_y_-30_r_118.162.png"
        file_noisy_line = os.path.join(folder_script, "./data/",
                                       filename_input)
        np_image = skimage.io.imread(file_noisy_line, as_gray=True)
        lst_points = Util.create_points_from_numpyimage(np_image)

        helper = GradientDescentCircleFitting(None,
                                              lst_points,
                                              learningrate=0.4,
                                              iterations=5000)
        result: CircleModel = helper.FindBestFittingCircle()
        #
        #Superimpose the new line over the image
        #
        folder_results = os.path.join(folder_script, "../out/")
        count_of_files = len(os.listdir(folder_results))
        filename_results = ("%s.%d.png" % (__name__, count_of_files))
        file_result = os.path.join(folder_results, filename_results)
        new_points = CircleModel.generate_points_from_circle(result)
        np_superimposed = Util.superimpose_points_on_image(
            np_image, new_points, 100, 255, 100)
        skimage.io.imsave(file_result, np_superimposed)

        delta = 10
        self.assertAlmostEquals(result.R, +118.0, delta=delta)
        self.assertAlmostEquals(result.X, +06.0, delta=delta)
        self.assertAlmostEquals(result.Y, -30.0, delta=delta)
        pass
Exemple #5
0
 def run(self, image):
     print(
         f"Going to run RANSAC on a patch square with dimension:{self.patchdimension}  and stride:{self.patchstride}"
     )
     self._image = image
     xtractor = ImagePatchExtractor(self.image, self._cropdimension,
                                    self._stride)
     patch_results: PatchResults = xtractor.extract_patches()
     patchcount_x = patch_results.patch_indices.shape[1]
     patchcount_y = patch_results.patch_indices.shape[0]
     good_patches: List[_PatchAnalysis] = list()
     for x in range(0, patchcount_x):
         for y in range(0, patchcount_y):
             patchinfo: PatchInfo = patch_results.get_patch_xy(x, y)
             img_patchregion = patchinfo.image
             lst_all_points = Util.create_points_from_numpyimage(
                 img_patchregion)
             line = self.find_line_using_ransac(lst_all_points,
                                                img_patchregion)
             if (line == None):
                 continue
             print("Got a line X=%d Y=%d , line=%s" % (x, y, str(line)))
             #add to a collection of patch regions+ransacline
             patch_analysis_result = _PatchAnalysis(patchinfo,
                                                    lst_all_points, line)
             good_patches.append(patch_analysis_result)
     pass
     print("Total interesting patches with lines found = %d" %
           (len(good_patches)))
     #you have all the patches that yielded some lines, superimpose on the original
     for good_patch in good_patches:
         print(str(good_patch))
     self.__superimpose(good_patches)
Exemple #6
0
def run_image2matplot(filename):
    folder_script = os.path.dirname(__file__)
    absolute_path = os.path.join(folder_script, "./input/", filename)
    try:
        np_image = skimage.io.imread(absolute_path, as_gray=True)
        lst_all_points = Util.create_points_from_numpyimage(np_image)
        plot_new_points_over_existing_points(lst_all_points, [], "Input data",
                                             "Original points", "")
        lrate = 0.3
        iterations = 5000
        helper = GradientDescentCircleFitting(None,
                                              points=lst_all_points,
                                              learningrate=lrate,
                                              iterations=iterations)
        start_time = time.time()
        model: CircleModel = helper.FindBestFittingCircle()
        new_points = CircleModel.generate_points_from_circle(model)

        plot_new_points_over_existing_points(
            lst_all_points, new_points, "Gradient descent circle fitting",
            "Original points", "Gradient descent")

    except Exception as e:
        tb = traceback.format_exc()
        print("Error:%s while doing RANSAC on the file: %s , stack=%s" %
              (str(e), filename, str(tb)))
        print("------------------------------------------------------------")
        pass
    pass
 def test_run_with_100x100_image(self):
     #
     #get a list of points
     #
     folder_script=os.path.dirname(__file__)
     filename_input="Line_100x100.png"
     file_noisy_line=os.path.join(folder_script,"./data/",filename_input)
     np_image=skimage.io.imread(file_noisy_line,as_gray=True)
     lst_points=Util.create_points_from_numpyimage(np_image)
     #
     #initialize RansalHelper
     #
     helper1=RansacLineHelper()
     helper1.add_points(lst_points)
     helper1.max_iterations=20
     helper1.min_points_for_model=2
     helper1.threshold_error=10
     helper1.threshold_inlier_count=3
     result_model=helper1.run()
     print("RANSAC-complete")    
     print("Found model %s , polar=%s" % (result_model,result_model.display_polar()))
     #
     #Superimpose the new line over the image
     #
     folder_results=os.path.join(folder_script,"../out/")
     count_of_files=len(os.listdir(folder_results))
     filename_results=("%s.Run.%d.png" % (filename_input,count_of_files) )
     file_result=os.path.join(folder_results,filename_results)
     x_lower=0
     x_upper=np_image.shape[1]-1
     y_lower=0
     y_upper=np_image.shape[0]-1
     #
     #Superimpose a line over the inliers only
     #
     new_points=Util.generate_plottable_points_from_projection_of_points(result_model,result_model.points)
     np_superimposed=Util.superimpose_points_on_image(np_image,new_points,100,255,100)
     skimage.io.imsave(file_result,np_superimposed)
     #11 inlier points in total which give us the good model
     self.assertEqual(len(result_model.points),11)
     #
     #No of detected inliers must be more than or equal to threshold
     #
     self.assertTrue(len(result_model.points) >= helper1.threshold_inlier_count,"Number of inliers should be >= threshold")
     #
     #There should be no-duplicates in the RANSAC inlier points
     #
     set_ids=set(map(lambda x: x.ID, result_model.points))
     list_ids=list(map(lambda x: x.ID, result_model.points))
     self.assertEqual(len(set_ids),len(list_ids),"Inliers should be unique")
     #
     #All the RANSAC linlier points must be within the threshold distance from the RANSAC line
     #
     for inlier_pt in result_model.points:
         distance=result_model.compute_distance(inlier_pt)
         self.assertTrue(distance < helper1.threshold_error,"Distance of inlier from RANSAC line must be less than threshold")
Exemple #8
0
def run(filename, threshold, inlier, sampling_fraction=0.25, matplot=False):
    print("Going to process file:%s" % (filename))
    folder_script = os.path.dirname(__file__)
    file_noisy_circle = os.path.join(folder_script, "./input/", filename)
    try:
        np_image = skimage.io.imread(file_noisy_circle, as_gray=True)

        #
        #Iterate over all cells of the NUMPY array and convert to array of Point classes
        #
        lst_all_points = Util.create_points_from_numpyimage(np_image)
        #
        #begin RANSAC
        #
        helper = RansacCircleHelper()
        helper.threshold_error = threshold
        helper.threshold_inlier_count = inlier
        helper.add_points(lst_all_points)
        helper.sampling_fraction = sampling_fraction
        best_model = helper.run()
        print("RANSAC-complete")
        if (best_model == None):
            print(
                "ERROR! Could not find a suitable model. Try altering ransac-threshold and min inliner count"
            )
            return
        #
        #Generate an output image with the model circle overlayed on top of original image
        #
        now = datetime.datetime.now()
        filename_result = ("%s-%s.png" %
                           (filename, now.strftime("%Y-%m-%d-%H-%M-%S")))
        file_result = os.path.join(folder_script, "./out/", filename_result)
        #Load input image into array
        np_image_result = skimage.io.imread(file_noisy_circle, as_gray=True)
        new_points = CircleModel.generate_points_from_circle(best_model)
        np_superimposed = Util.superimpose_points_on_image(
            np_image_result, new_points, 100, 255, 100)
        #Save new image
        skimage.io.imsave(file_result, np_superimposed)
        print("Results saved to file:%s" % (file_result))
        print("------------------------------------------------------------")
        if (matplot == True):
            plot_new_points_over_existing_points(
                lst_all_points, new_points, "Outcome of RANSAC algorithm",
                "Original points", "RANSAC")

    except Exception as e:
        tb = traceback.format_exc()
        print("Error:%s while doing RANSAC on the file: %s , stack=%s" %
              (str(e), filename, str(tb)))
        print("------------------------------------------------------------")
        pass
 def test_run_with_very_simple_image(self):
     #
     #get a list of points
     #
     folder_script=os.path.dirname(__file__)
     filename_input="Line_50x30.png"
     file_noisy_line=os.path.join(folder_script,"./data/",filename_input)
     np_image=skimage.io.imread(file_noisy_line,as_gray=True)
     lst_points=Util.create_points_from_numpyimage(np_image)
     #
     #initialize RansalHelper
     #
     helper1=RansacLineHelper()
     helper1.add_points(lst_points)
     helper1.max_iterations=1000
     #10000 did not work
     helper1.min_points_for_model=2
     helper1.threshold_error=3 #10
     helper1.threshold_inlier_count=3
     result_model=helper1.run()
     print("RANSAC-complete")    
     print("Found model %s , polar=%s" % (result_model,result_model.display_polar()))
     #
     #Superimpose the new line over the image
     #
     folder_results=os.path.join(folder_script,"../out/")
     count_of_files=len(os.listdir(folder_results))
     filename_results=("Line_50x30.%d.png" % (count_of_files) )
     file_result=os.path.join(folder_results,filename_results)
     x_lower=0
     x_upper=np_image.shape[1]-1
     y_lower=0
     y_upper=np_image.shape[0]-1
     new_points=LineModel.generate_points_from_line(result_model,x_lower,y_lower,x_upper,y_upper)
     np_superimposed=Util.superimpose_points_on_image(np_image,new_points,100,255,100)
     skimage.io.imsave(file_result,np_superimposed)
     #
     #Asserts!
     #
     x_intercept=result_model.xintercept()
     y_intercept=result_model.yintercept()
     self.assertTrue ( x_intercept > 30,"X intercept below threshold")
     self.assertTrue ( x_intercept < 50,"X intercept above threshold")
     self.assertTrue ( y_intercept > 30,"Y intercept above threshold")
     self.assertTrue ( y_intercept < 45,"Y intercept below threshold")
     self.assertTrue(len(result_model.points),5)
     for pt in result_model.points:
         distance_from_line=result_model.compute_distance(pt)
         self.assertTrue(distance_from_line <= helper1.threshold_error)
Exemple #10
0
def run_image2image(filename):
    print("Going to fit circle in the file:%s" % (filename))
    folder_script = os.path.dirname(__file__)
    absolute_path = os.path.join(folder_script, "./input/", filename)
    try:
        np_image = skimage.io.imread(absolute_path, as_gray=True)
        lst_all_points = Util.create_points_from_numpyimage(np_image)
        lrate = 0.3
        iterations = 5000
        helper = GradientDescentCircleFitting(None,
                                              points=lst_all_points,
                                              learningrate=lrate,
                                              iterations=iterations)
        start_time = time.time()
        model: CircleModel = helper.FindBestFittingCircle()
        print("--- %s seconds for gradient descent algo ---" %
              (time.time() - start_time))
        #
        #Generate an output image with the model circle overlayed on top of original image
        #
        now = datetime.datetime.now()
        filename_result = ("gradient-descent-%s.png" % (filename))
        file_result = os.path.join(folder_script, "./out/", filename_result)
        #Load input image into array
        np_image_result = skimage.io.imread(absolute_path, as_gray=True)
        new_points = CircleModel.generate_points_from_circle(model)
        np_superimposed = Util.superimpose_points_on_image(
            np_image_result, new_points, 100, 255, 100)
        #Save new image
        skimage.io.imsave(file_result, np_superimposed)
        print("Results saved to file:%s" % (file_result))
        print("------------------------------------------------------------")

    except Exception as e:
        tb = traceback.format_exc()
        print("Error:%s while doing RANSAC on the file: %s , stack=%s" %
              (str(e), filename, str(tb)))
        print("------------------------------------------------------------")
        pass

    pass
Exemple #11
0
    def test_create_points_from_numpyimage(self):
        pass
        folder_script = os.path.dirname(__file__)
        filename = "Util_unittest.png"
        file_noisy_line = os.path.join(folder_script, "./data/", filename)
        np_image = skimage.io.imread(file_noisy_line, as_gray=True)
        height = np_image.shape[0]
        width = np_image.shape[1]

        lst_points = Util.create_points_from_numpyimage(np_image)
        np_shape = np_image.shape
        self.assertEqual(len(lst_points), 3)

        for pt_any in lst_points:
            if pt_any.X == 0 and pt_any.Y == height - 1:
                pass
            elif (pt_any.X == width - 1 and pt_any.Y == height - 1):
                pass
            elif (pt_any.X == width - 1 and pt_any.Y == 0):
                pass
            else:
                raise Exception("Point '%s' was not expected." % (pt_any))
Exemple #12
0
def run_ransac(filename):
    folder_script = os.path.dirname(__file__)

    #Images which did not generate good results:
    #   NoisyImage_3.png
    #   NoisyLine-Gaussian-sp-0.80.111.png
    file_noisy_line = os.path.join(folder_script, "./input/", filename)
    np_image = skimage.io.imread(file_noisy_line, as_gray=True)
    #
    #Iterate over all cells of the NUMPY array and convert to array of Point classes
    #
    lst_all_points = Util.create_points_from_numpyimage(np_image)

    #
    #begin RANSAC
    #
    ransac_maxiterations = 12000
    #12000
    #6000
    #12000 worked well
    ransac_minpoints = 5
    #5 worked well
    #2 gave very bad results
    #20 worked well
    ransac_threshold = 5
    #25 worked well for 'NoisyLine-Gaussian-sp-0.80.104.png' 15 and 5 did not
    #Nothing worked well for 'NoisyLine-Gaussian-sp-0.80.111.png" , tried increasing to 35
    #3 for first set when points were much closer
    #5 produced too much deviation

    ransac_mininliers = 10

    helper = RansacLineHelper()
    helper.max_iterations = ransac_maxiterations
    helper.min_points_for_model = ransac_minpoints
    helper.threshold_error = ransac_threshold
    helper.threshold_inlier_count = ransac_mininliers
    helper.add_points(lst_all_points)
    model = helper.run()

    #Display the model , you could render over the original picture
    print("-------------------------------------")
    print("RANSAC-complete")
    print("Found model %s , polar=%s" % (model, model.display_polar()))
    #
    #Generate an output image with the model line
    #
    filename_noextension = no_extension = os.path.splitext(filename)[0]
    now = datetime.datetime.now()
    filename_result = ("%s-%s.result.png") % (
        filename_noextension, now.strftime("%Y-%m-%d-%H-%M-%S"))
    file_result = os.path.join(folder_script, "./out/", filename_result)
    #Load input image into array
    np_image_result = skimage.io.imread(file_noisy_line, as_gray=True)
    new_points = LineModel.generate_points_from_line(
        model, 0, 0, np_image_result.shape[1] - 1,
        np_image_result.shape[0] - 1)
    np_superimposed = Util.superimpose_points_on_image(np_image_result,
                                                       new_points, 100, 255,
                                                       100)
    #Save new image
    skimage.io.imsave(file_result, np_superimposed)