Exemple #1
0
 def test_when_points_are_superimposed_over_image_array_and_saved_the_new_image_must_contain_the_new_points(
         self):
     folder_script = os.path.dirname(__file__)
     filename = "Util_unittest.png"
     file_noisy_line = os.path.join(folder_script, "./data/", filename)
     np_image = skimage.io.imread(file_noisy_line, as_gray=True)
     file_result = os.path.join(folder_script, "../out/", filename)
     new_points = list()
     #
     #Superimpose some points
     #
     new_points.append(Point(0, 0))
     new_points.append(Point(2, 2))
     new_points.append(Point(3, 3))
     new_points.append(Point(4, 4))
     color_red = 100
     color_green = 255
     color_blue = 90
     np_newimage = Util.superimpose_points_on_image(np_image, new_points,
                                                    color_red, color_green,
                                                    color_blue)
     skimage.io.imsave(file_result, np_newimage)
     #Read the image back and test the points
     np_newimage2 = skimage.io.imread(file_result, as_gray=False)
     height = np_newimage.shape[0]
     for p in new_points:
         x = p.X
         y = height - p.Y - 1
         self.assertEqual(np_newimage2[y][x][0], color_red)
         self.assertEqual(np_newimage2[y][x][1], color_green)
         self.assertEqual(np_newimage2[y][x][2], color_blue)
     pass
     self.assertGreater(len(new_points), 1)
Exemple #2
0
    def __generate_xy_from_custom_function(self,image_array):
        max_distance=self._max_distance_consecutive_points
        x_start=0
        width=image_array.shape[1]
        height=image_array.shape[0]
        x_end=width
        y_origin=height/2

        delta_x=width*0.25 #an approx gap to being with
        x_last=x_start
        y_last=self.__InvokeAnyFunction(x_last ,width=width,height=height)+y_origin #add a new private functoin and property to decide which type of curve
        pts_new=list();
        while(x_last<x_end):
            gap=delta_x
            while(True):
                x_new=x_last+gap
                y_new=self.__InvokeAnyFunction(x_new,width=width,height=height)+y_origin
                dsquare=(x_new-x_last)**2 + (y_new-y_last)**2
                d=dsquare**0.5
                if (d <= max_distance):
                    pt_new=Point(x_new,y_new)
                    pts_new.append(pt_new)
                    x_last=x_new
                    y_last=y_new
                    break
                else:
                    gap=gap*0.5 #reduce the gap and try again
                    continue
        image_result=Util.superimpose_points_on_image(image_array,pts_new, 0,0,0)
        return image_result
        pass
Exemple #3
0
    def test_large_circle_50X50_no_noise_2(self):
        folder_script = os.path.dirname(__file__)
        filename_input = "NoisyCircle_x_6_y_-30_r_118.162.png"
        file_noisy_line = os.path.join(folder_script, "./data/",
                                       filename_input)
        np_image = skimage.io.imread(file_noisy_line, as_gray=True)
        lst_points = Util.create_points_from_numpyimage(np_image)

        helper = GradientDescentCircleFitting(None,
                                              lst_points,
                                              learningrate=0.4,
                                              iterations=5000)
        result: CircleModel = helper.FindBestFittingCircle()
        #
        #Superimpose the new line over the image
        #
        folder_results = os.path.join(folder_script, "../out/")
        count_of_files = len(os.listdir(folder_results))
        filename_results = ("%s.%d.png" % (__name__, count_of_files))
        file_result = os.path.join(folder_results, filename_results)
        new_points = CircleModel.generate_points_from_circle(result)
        np_superimposed = Util.superimpose_points_on_image(
            np_image, new_points, 100, 255, 100)
        skimage.io.imsave(file_result, np_superimposed)

        delta = 10
        self.assertAlmostEquals(result.R, +118.0, delta=delta)
        self.assertAlmostEquals(result.X, +06.0, delta=delta)
        self.assertAlmostEquals(result.Y, -30.0, delta=delta)
        pass
    def test_large_circle_50X50_no_noise_1(self):
        folder_script=os.path.dirname(__file__)
        filename_input="NoisyCircle_x_-10_y_-14.png"
        file_noisy_line=os.path.join(folder_script,"./data/",filename_input)
        np_image=skimage.io.imread(file_noisy_line,as_gray=True)
        lst_points=Util.create_points_from_numpyimage(np_image)

        helper=BullockCircleFitting(lst_points)
        result:CircleModel =helper.FindBestFittingCircle()
        #
        #Superimpose the new line over the image
        #
        folder_results=os.path.join(folder_script,"../out/")
        count_of_files=len(os.listdir(folder_results))
        filename_results=("%s.%d.png" % (__name__,count_of_files) )
        file_result=os.path.join(folder_results,filename_results)
        new_points=CircleModel.generate_points_from_circle(result)
        np_superimposed=Util.superimpose_points_on_image(np_image,new_points,100,255,100)
        skimage.io.imsave(file_result,np_superimposed)

        delta=2
        self.assertAlmostEquals(result.R, 48.0, delta=delta);
        self.assertAlmostEquals(result.X, -10.0, delta=delta);
        self.assertAlmostEquals(result.Y, -14.0, delta=delta);
        pass
 def test_run_with_100x100_image(self):
     #
     #get a list of points
     #
     folder_script=os.path.dirname(__file__)
     filename_input="Line_100x100.png"
     file_noisy_line=os.path.join(folder_script,"./data/",filename_input)
     np_image=skimage.io.imread(file_noisy_line,as_gray=True)
     lst_points=Util.create_points_from_numpyimage(np_image)
     #
     #initialize RansalHelper
     #
     helper1=RansacLineHelper()
     helper1.add_points(lst_points)
     helper1.max_iterations=20
     helper1.min_points_for_model=2
     helper1.threshold_error=10
     helper1.threshold_inlier_count=3
     result_model=helper1.run()
     print("RANSAC-complete")    
     print("Found model %s , polar=%s" % (result_model,result_model.display_polar()))
     #
     #Superimpose the new line over the image
     #
     folder_results=os.path.join(folder_script,"../out/")
     count_of_files=len(os.listdir(folder_results))
     filename_results=("%s.Run.%d.png" % (filename_input,count_of_files) )
     file_result=os.path.join(folder_results,filename_results)
     x_lower=0
     x_upper=np_image.shape[1]-1
     y_lower=0
     y_upper=np_image.shape[0]-1
     #
     #Superimpose a line over the inliers only
     #
     new_points=Util.generate_plottable_points_from_projection_of_points(result_model,result_model.points)
     np_superimposed=Util.superimpose_points_on_image(np_image,new_points,100,255,100)
     skimage.io.imsave(file_result,np_superimposed)
     #11 inlier points in total which give us the good model
     self.assertEqual(len(result_model.points),11)
     #
     #No of detected inliers must be more than or equal to threshold
     #
     self.assertTrue(len(result_model.points) >= helper1.threshold_inlier_count,"Number of inliers should be >= threshold")
     #
     #There should be no-duplicates in the RANSAC inlier points
     #
     set_ids=set(map(lambda x: x.ID, result_model.points))
     list_ids=list(map(lambda x: x.ID, result_model.points))
     self.assertEqual(len(set_ids),len(list_ids),"Inliers should be unique")
     #
     #All the RANSAC linlier points must be within the threshold distance from the RANSAC line
     #
     for inlier_pt in result_model.points:
         distance=result_model.compute_distance(inlier_pt)
         self.assertTrue(distance < helper1.threshold_error,"Distance of inlier from RANSAC line must be less than threshold")
Exemple #6
0
def run(filename, threshold, inlier, sampling_fraction=0.25, matplot=False):
    print("Going to process file:%s" % (filename))
    folder_script = os.path.dirname(__file__)
    file_noisy_circle = os.path.join(folder_script, "./input/", filename)
    try:
        np_image = skimage.io.imread(file_noisy_circle, as_gray=True)

        #
        #Iterate over all cells of the NUMPY array and convert to array of Point classes
        #
        lst_all_points = Util.create_points_from_numpyimage(np_image)
        #
        #begin RANSAC
        #
        helper = RansacCircleHelper()
        helper.threshold_error = threshold
        helper.threshold_inlier_count = inlier
        helper.add_points(lst_all_points)
        helper.sampling_fraction = sampling_fraction
        best_model = helper.run()
        print("RANSAC-complete")
        if (best_model == None):
            print(
                "ERROR! Could not find a suitable model. Try altering ransac-threshold and min inliner count"
            )
            return
        #
        #Generate an output image with the model circle overlayed on top of original image
        #
        now = datetime.datetime.now()
        filename_result = ("%s-%s.png" %
                           (filename, now.strftime("%Y-%m-%d-%H-%M-%S")))
        file_result = os.path.join(folder_script, "./out/", filename_result)
        #Load input image into array
        np_image_result = skimage.io.imread(file_noisy_circle, as_gray=True)
        new_points = CircleModel.generate_points_from_circle(best_model)
        np_superimposed = Util.superimpose_points_on_image(
            np_image_result, new_points, 100, 255, 100)
        #Save new image
        skimage.io.imsave(file_result, np_superimposed)
        print("Results saved to file:%s" % (file_result))
        print("------------------------------------------------------------")
        if (matplot == True):
            plot_new_points_over_existing_points(
                lst_all_points, new_points, "Outcome of RANSAC algorithm",
                "Original points", "RANSAC")

    except Exception as e:
        tb = traceback.format_exc()
        print("Error:%s while doing RANSAC on the file: %s , stack=%s" %
              (str(e), filename, str(tb)))
        print("------------------------------------------------------------")
        pass
 def test_run_with_very_simple_image(self):
     #
     #get a list of points
     #
     folder_script=os.path.dirname(__file__)
     filename_input="Line_50x30.png"
     file_noisy_line=os.path.join(folder_script,"./data/",filename_input)
     np_image=skimage.io.imread(file_noisy_line,as_gray=True)
     lst_points=Util.create_points_from_numpyimage(np_image)
     #
     #initialize RansalHelper
     #
     helper1=RansacLineHelper()
     helper1.add_points(lst_points)
     helper1.max_iterations=1000
     #10000 did not work
     helper1.min_points_for_model=2
     helper1.threshold_error=3 #10
     helper1.threshold_inlier_count=3
     result_model=helper1.run()
     print("RANSAC-complete")    
     print("Found model %s , polar=%s" % (result_model,result_model.display_polar()))
     #
     #Superimpose the new line over the image
     #
     folder_results=os.path.join(folder_script,"../out/")
     count_of_files=len(os.listdir(folder_results))
     filename_results=("Line_50x30.%d.png" % (count_of_files) )
     file_result=os.path.join(folder_results,filename_results)
     x_lower=0
     x_upper=np_image.shape[1]-1
     y_lower=0
     y_upper=np_image.shape[0]-1
     new_points=LineModel.generate_points_from_line(result_model,x_lower,y_lower,x_upper,y_upper)
     np_superimposed=Util.superimpose_points_on_image(np_image,new_points,100,255,100)
     skimage.io.imsave(file_result,np_superimposed)
     #
     #Asserts!
     #
     x_intercept=result_model.xintercept()
     y_intercept=result_model.yintercept()
     self.assertTrue ( x_intercept > 30,"X intercept below threshold")
     self.assertTrue ( x_intercept < 50,"X intercept above threshold")
     self.assertTrue ( y_intercept > 30,"Y intercept above threshold")
     self.assertTrue ( y_intercept < 45,"Y intercept below threshold")
     self.assertTrue(len(result_model.points),5)
     for pt in result_model.points:
         distance_from_line=result_model.compute_distance(pt)
         self.assertTrue(distance_from_line <= helper1.threshold_error)
Exemple #8
0
    def superimpose_circle_over_original_image(self, original_image_file,
                                               circle):
        np_image = skimage.io.imread(original_image_file, as_gray=True)

        folder_script = os.path.dirname(__file__)
        folder_results = os.path.join(folder_script, "../out/")
        count_of_files = len(os.listdir(folder_results))
        filename_results = ("%s.%d.png" % (__name__, count_of_files))
        file_result = os.path.join(folder_results, filename_results)

        new_points = CircleModel.generate_points_from_circle(circle,
                                                             distance=2)
        np_superimposed = Util.superimpose_points_on_image(
            np_image, new_points, 255, 255, 0)
        skimage.io.imsave(file_result, np_superimposed)
Exemple #9
0
def run_image2image(filename):
    print("Going to fit circle in the file:%s" % (filename))
    folder_script = os.path.dirname(__file__)
    absolute_path = os.path.join(folder_script, "./input/", filename)
    try:
        np_image = skimage.io.imread(absolute_path, as_gray=True)
        lst_all_points = Util.create_points_from_numpyimage(np_image)
        lrate = 0.3
        iterations = 5000
        helper = GradientDescentCircleFitting(None,
                                              points=lst_all_points,
                                              learningrate=lrate,
                                              iterations=iterations)
        start_time = time.time()
        model: CircleModel = helper.FindBestFittingCircle()
        print("--- %s seconds for gradient descent algo ---" %
              (time.time() - start_time))
        #
        #Generate an output image with the model circle overlayed on top of original image
        #
        now = datetime.datetime.now()
        filename_result = ("gradient-descent-%s.png" % (filename))
        file_result = os.path.join(folder_script, "./out/", filename_result)
        #Load input image into array
        np_image_result = skimage.io.imread(absolute_path, as_gray=True)
        new_points = CircleModel.generate_points_from_circle(model)
        np_superimposed = Util.superimpose_points_on_image(
            np_image_result, new_points, 100, 255, 100)
        #Save new image
        skimage.io.imsave(file_result, np_superimposed)
        print("Results saved to file:%s" % (file_result))
        print("------------------------------------------------------------")

    except Exception as e:
        tb = traceback.format_exc()
        print("Error:%s while doing RANSAC on the file: %s , stack=%s" %
              (str(e), filename, str(tb)))
        print("------------------------------------------------------------")
        pass

    pass
Exemple #10
0
 def __superimpose(self, patches):
     lst_allpoints_from_all_patches = list()
     image_height = self.image.shape[0]
     for patch in patches:
         try:
             ransac_points: List[Point] = patch.ransacline.points
             plottable_points = Util.generate_plottable_points_from_projection_of_points(
                 patch.ransacline, patch.ransacline.points)
             for plottable_point in plottable_points:
                 new_x = patch.patchinfo.topleft.X + plottable_point.X
                 #new_y=patch.patchinfo.topleft.Y + plottable_point.Y
                 #new_y=(image_height-patch.patchinfo.topleft.Y) + plottable_point.Y
                 new_y = (image_height - patch.patchinfo.topleft.Y -
                          self._cropdimension) + plottable_point.Y
                 translated_point = Point(new_x, new_y)
                 lst_allpoints_from_all_patches.append(translated_point)
         except Exception as e:
             print("Exception while superimposing %s" % (patch.patchinfo))
     pass
     np_superimposed_patches = Util.superimpose_points_on_image(
         self._image, lst_allpoints_from_all_patches, 100, 255, 100)
     skimage.io.imsave(self.OutputImageFile, np_superimposed_patches)
     pass
Exemple #11
0
def run_ransac(filename):
    folder_script = os.path.dirname(__file__)

    #Images which did not generate good results:
    #   NoisyImage_3.png
    #   NoisyLine-Gaussian-sp-0.80.111.png
    file_noisy_line = os.path.join(folder_script, "./input/", filename)
    np_image = skimage.io.imread(file_noisy_line, as_gray=True)
    #
    #Iterate over all cells of the NUMPY array and convert to array of Point classes
    #
    lst_all_points = Util.create_points_from_numpyimage(np_image)

    #
    #begin RANSAC
    #
    ransac_maxiterations = 12000
    #12000
    #6000
    #12000 worked well
    ransac_minpoints = 5
    #5 worked well
    #2 gave very bad results
    #20 worked well
    ransac_threshold = 5
    #25 worked well for 'NoisyLine-Gaussian-sp-0.80.104.png' 15 and 5 did not
    #Nothing worked well for 'NoisyLine-Gaussian-sp-0.80.111.png" , tried increasing to 35
    #3 for first set when points were much closer
    #5 produced too much deviation

    ransac_mininliers = 10

    helper = RansacLineHelper()
    helper.max_iterations = ransac_maxiterations
    helper.min_points_for_model = ransac_minpoints
    helper.threshold_error = ransac_threshold
    helper.threshold_inlier_count = ransac_mininliers
    helper.add_points(lst_all_points)
    model = helper.run()

    #Display the model , you could render over the original picture
    print("-------------------------------------")
    print("RANSAC-complete")
    print("Found model %s , polar=%s" % (model, model.display_polar()))
    #
    #Generate an output image with the model line
    #
    filename_noextension = no_extension = os.path.splitext(filename)[0]
    now = datetime.datetime.now()
    filename_result = ("%s-%s.result.png") % (
        filename_noextension, now.strftime("%Y-%m-%d-%H-%M-%S"))
    file_result = os.path.join(folder_script, "./out/", filename_result)
    #Load input image into array
    np_image_result = skimage.io.imread(file_noisy_line, as_gray=True)
    new_points = LineModel.generate_points_from_line(
        model, 0, 0, np_image_result.shape[1] - 1,
        np_image_result.shape[0] - 1)
    np_superimposed = Util.superimpose_points_on_image(np_image_result,
                                                       new_points, 100, 255,
                                                       100)
    #Save new image
    skimage.io.imsave(file_result, np_superimposed)