Exemple #1
0
    def test_inv(self):
        reg = regularization.Tikhonov(self.mesh)
        opt = optimization.InexactGaussNewton(maxIter=10, use_WolfeCurvature=True)
        invProb = inverse_problem.BaseInvProblem(self.dmiscombo, reg, opt)
        directives_list = [
            directives.ScalingMultipleDataMisfits_ByEig(verbose=True),
            directives.AlphasSmoothEstimate_ByEig(verbose=True),
            directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
            directives.MultiTargetMisfits(TriggerSmall=False),
            directives.BetaSchedule(),
        ]
        inv = inversion.BaseInversion(invProb, directiveList=directives_list)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)
    def setUp(self):
        print("\n  ---- Testing {} ---- \n".format(self.formulation))
        cs = 12.5
        hx = [(cs, 2, -1.3), (cs, 61), (cs, 2, 1.3)]
        hy = [(cs, 2, -1.3), (cs, 20)]
        mesh = discretize.TensorMesh([hx, hy], x0="CN")
        x = np.linspace(-135, 250.0, 20)
        M = utils.ndgrid(x - 12.5, np.r_[0.0])
        N = utils.ndgrid(x + 12.5, np.r_[0.0])
        A0loc = np.r_[-150, 0.0]
        A1loc = np.r_[-130, 0.0]
        # rxloc = [np.c_[M, np.zeros(20)], np.c_[N, np.zeros(20)]]
        rx1 = dc.receivers.Dipole(M, N)
        rx2 = dc.receivers.Dipole(M, N, data_type="apparent_resistivity")
        src0 = dc.sources.Pole([rx1, rx2], A0loc)
        src1 = dc.sources.Pole([rx1, rx2], A1loc)
        survey = dc.survey.Survey([src0, src1])
        survey.set_geometric_factor()
        simulation = getattr(dc, self.formulation)(
            mesh,
            rhoMap=maps.IdentityMap(mesh),
            storeJ=self.storeJ,
            solver=Solver,
            survey=survey,
        )
        mSynth = np.ones(mesh.nC) * 1.0
        data = simulation.make_synthetic_data(mSynth, add_noise=True)

        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data)
        reg = regularization.Tikhonov(mesh)
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e0)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = simulation
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
        self.data = data
    def setUp(self):

        aSpacing = 2.5
        nElecs = 5

        surveySize = nElecs * aSpacing - aSpacing
        cs = surveySize / nElecs / 4

        mesh = discretize.TensorMesh(
            [
                [(cs, 10, -1.3), (cs, surveySize / cs), (cs, 10, 1.3)],
                [(cs, 3, -1.3), (cs, 3, 1.3)],
                # [(cs, 5, -1.3), (cs, 10)]
            ],
            "CN",
        )

        source_list = dc.utils.WennerSrcList(nElecs, aSpacing, in2D=True)
        survey = dc.survey.Survey(source_list)
        simulation = dc.simulation.Simulation3DCellCentered(
            mesh=mesh,
            survey=survey,
            rhoMap=maps.IdentityMap(mesh),
            storeJ=True)

        mSynth = np.ones(mesh.nC)
        dobs = simulation.make_synthetic_data(mSynth, add_noise=True)

        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(simulation=simulation, data=dobs)
        reg = regularization.Tikhonov(mesh)
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = simulation
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
        self.dobs = dobs
Exemple #4
0
    def test_inv_mref_setting(self):
        reg1 = regularization.Tikhonov(self.mesh)
        reg2 = regularization.Tikhonov(self.mesh)
        reg = reg1 + reg2
        opt = optimization.ProjectedGNCG(
            maxIter=10, lower=-10, upper=10, maxIterLS=20, maxIterCG=50, tolCG=1e-4
        )
        invProb = inverse_problem.BaseInvProblem(self.dmiscombo, reg, opt)
        directives_list = [
            directives.ScalingMultipleDataMisfits_ByEig(chi0_ratio=[0.01, 1.0], verbose=True),
            directives.AlphasSmoothEstimate_ByEig(verbose=True),
            directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
            directives.BetaSchedule(),
        ]
        inv = inversion.BaseInversion(invProb, directiveList=directives_list)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)

        self.assertTrue(np.all(reg1.mref == m0))
        self.assertTrue(np.all(reg2.mref == m0))
Exemple #5
0
def run(plotIt=True):

    # Define the inducing field parameter
    H0 = (50000, 90, 0)

    # Create a mesh
    dx = 5.0

    hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 10)]

    mesh = TensorMesh([hxind, hyind, hzind], "CCC")

    # Get index of the center
    midx = int(mesh.nCx / 2)
    midy = int(mesh.nCy / 2)

    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
    zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1]

    # We would usually load a topofile
    topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

    # Go from topo to array of indices of active cells
    actv = utils.surface2ind_topo(mesh, topo, "N")
    actv = np.where(actv)[0]
    nC = len(actv)

    # Create and array of observation points
    xr = np.linspace(-20.0, 20.0, 20)
    yr = np.linspace(-20.0, 20.0, 20)
    X, Y = np.meshgrid(xr, yr)

    # Move the observation points 5m above the topo
    Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 5.0

    # Create a MAGsurvey
    rxLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
    rxLoc = magnetics.receivers.Point(rxLoc, components=["tmi"])
    srcField = magnetics.sources.SourceField(receiver_list=[rxLoc],
                                             parameters=H0)
    survey = magnetics.survey.Survey(srcField)

    # We can now create a susceptibility model and generate data
    # Here a simple block in half-space
    model = np.zeros((mesh.nCx, mesh.nCy, mesh.nCz))
    model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.02
    model = utils.mkvc(model)
    model = model[actv]

    # Create active map to go from reduce set to full
    actvMap = maps.InjectActiveCells(mesh, actv, -100)

    # Create reduced identity map
    idenMap = maps.IdentityMap(nP=nC)

    # Create the forward model operator
    simulation = magnetics.simulation.Simulation3DIntegral(
        survey=survey,
        mesh=mesh,
        chiMap=idenMap,
        actInd=actv,
    )

    # Compute linear forward operator and compute some data
    d = simulation.dpred(model)

    # Add noise and uncertainties
    # We add some random Gaussian noise (1nT)
    synthetic_data = d + np.random.randn(len(d))
    wd = np.ones(len(synthetic_data)) * 1.0  # Assign flat uncertainties

    data_object = data.Data(survey, dobs=synthetic_data, noise_floor=wd)

    # Create a regularization
    reg = regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
    reg.mref = np.zeros(nC)
    reg.norms = np.c_[0, 0, 0, 0]
    # reg.eps_p, reg.eps_q = 1e-0, 1e-0

    # Create sensitivity weights from our linear forward operator
    rxLoc = survey.source_field.receiver_list[0].locations
    m0 = np.ones(nC) * 1e-4  # Starting model

    # Data misfit function
    dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data_object)
    dmis.W = 1 / wd

    # Add directives to the inversion
    opt = optimization.ProjectedGNCG(maxIter=20,
                                     lower=0.0,
                                     upper=1.0,
                                     maxIterLS=20,
                                     maxIterCG=20,
                                     tolCG=1e-3)
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e-1)

    # Here is where the norms are applied
    # Use pick a threshold parameter empirically based on the distribution of
    #  model parameters
    IRLS = directives.Update_IRLS(f_min_change=1e-3, max_irls_iterations=40)
    saveDict = directives.SaveOutputEveryIteration(save_txt=False)
    update_Jacobi = directives.UpdatePreconditioner()
    # Add sensitivity weights
    sensitivity_weights = directives.UpdateSensitivityWeights(everyIter=False)

    inv = inversion.BaseInversion(
        invProb,
        directiveList=[
            sensitivity_weights, IRLS, betaest, update_Jacobi, saveDict
        ],
    )

    # Run the inversion
    mrec = inv.run(m0)

    if plotIt:
        # Here is the recovered susceptibility model
        ypanel = midx
        zpanel = -5
        m_l2 = actvMap * invProb.l2model
        m_l2[m_l2 == -100] = np.nan

        m_lp = actvMap * mrec
        m_lp[m_lp == -100] = np.nan

        m_true = actvMap * model
        m_true[m_true == -100] = np.nan

        # Plot the data
        utils.plot_utils.plot2Ddata(rxLoc, d)

        plt.figure()

        # Plot L2 model
        ax = plt.subplot(321)
        mesh.plotSlice(
            m_l2,
            ax=ax,
            normal="Z",
            ind=zpanel,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
            color="w",
        )
        plt.title("Plan l2-model.")
        plt.gca().set_aspect("equal")
        plt.ylabel("y")
        ax.xaxis.set_visible(False)
        plt.gca().set_aspect("equal", adjustable="box")

        # Vertica section
        ax = plt.subplot(322)
        mesh.plotSlice(
            m_l2,
            ax=ax,
            normal="Y",
            ind=midx,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
            color="w",
        )
        plt.title("E-W l2-model.")
        plt.gca().set_aspect("equal")
        ax.xaxis.set_visible(False)
        plt.ylabel("z")
        plt.gca().set_aspect("equal", adjustable="box")

        # Plot Lp model
        ax = plt.subplot(323)
        mesh.plotSlice(
            m_lp,
            ax=ax,
            normal="Z",
            ind=zpanel,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
            color="w",
        )
        plt.title("Plan lp-model.")
        plt.gca().set_aspect("equal")
        ax.xaxis.set_visible(False)
        plt.ylabel("y")
        plt.gca().set_aspect("equal", adjustable="box")

        # Vertical section
        ax = plt.subplot(324)
        mesh.plotSlice(
            m_lp,
            ax=ax,
            normal="Y",
            ind=midx,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
            color="w",
        )
        plt.title("E-W lp-model.")
        plt.gca().set_aspect("equal")
        ax.xaxis.set_visible(False)
        plt.ylabel("z")
        plt.gca().set_aspect("equal", adjustable="box")

        # Plot True model
        ax = plt.subplot(325)
        mesh.plotSlice(
            m_true,
            ax=ax,
            normal="Z",
            ind=zpanel,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
            color="w",
        )
        plt.title("Plan true model.")
        plt.gca().set_aspect("equal")
        plt.xlabel("x")
        plt.ylabel("y")
        plt.gca().set_aspect("equal", adjustable="box")

        # Vertical section
        ax = plt.subplot(326)
        mesh.plotSlice(
            m_true,
            ax=ax,
            normal="Y",
            ind=midx,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
            color="w",
        )
        plt.title("E-W true model.")
        plt.gca().set_aspect("equal")
        plt.xlabel("x")
        plt.ylabel("z")
        plt.gca().set_aspect("equal", adjustable="box")

        # Plot convergence curves
        fig, axs = plt.figure(), plt.subplot()
        axs.plot(saveDict.phi_d, "k", lw=2)
        axs.plot(
            np.r_[IRLS.iterStart, IRLS.iterStart],
            np.r_[0, np.max(saveDict.phi_d)],
            "k:",
        )

        twin = axs.twinx()
        twin.plot(saveDict.phi_m, "k--", lw=2)
        axs.text(
            IRLS.iterStart,
            0,
            "IRLS Steps",
            va="bottom",
            ha="center",
            rotation="vertical",
            size=12,
            bbox={"facecolor": "white"},
        )

        axs.set_ylabel("$\phi_d$", size=16, rotation=0)
        axs.set_xlabel("Iterations", size=14)
        twin.set_ylabel("$\phi_m$", size=16, rotation=0)
    def setUp(self):
        np.random.seed(0)
        H0 = (50000.0, 90.0, 0.0)

        # The magnetization is set along a different
        # direction (induced + remanence)
        M = np.array([45.0, 90.0])

        # Create grid of points for topography
        # Lets create a simple Gaussian topo
        # and set the active cells
        [xx, yy] = np.meshgrid(np.linspace(-200, 200, 50),
                               np.linspace(-200, 200, 50))
        b = 100
        A = 50
        zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0))

        # We would usually load a topofile
        topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

        # Create and array of observation points
        xr = np.linspace(-100.0, 100.0, 20)
        yr = np.linspace(-100.0, 100.0, 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 5

        # Create a MAGsurvey
        xyzLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
        rxLoc = mag.Point(xyzLoc)
        srcField = mag.SourceField([rxLoc], parameters=H0)
        survey = mag.Survey(srcField)

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100

        mesh = mesh_builder_xyz(xyzLoc,
                                h,
                                padding_distance=padDist,
                                depth_core=100,
                                mesh_type="tree")
        mesh = refine_tree_xyz(mesh,
                               topo,
                               method="surface",
                               octree_levels=[4, 4],
                               finalize=True)
        self.mesh = mesh
        # Define an active cells from topo
        actv = utils.surface2ind_topo(mesh, topo)
        nC = int(actv.sum())

        model = np.zeros((mesh.nC, 3))

        # Convert the inclination declination to vector in Cartesian
        M_xyz = utils.mat_utils.dip_azimuth2cartesian(M[0], M[1])

        # Get the indicies of the magnetized block
        ind = utils.model_builder.getIndicesBlock(
            np.r_[-20, -20, -10],
            np.r_[20, 20, 25],
            mesh.gridCC,
        )[0]

        # Assign magnetization values
        model[ind, :] = np.kron(np.ones((ind.shape[0], 1)), M_xyz * 0.05)

        # Remove air cells
        self.model = model[actv, :]

        # Create active map to go from reduce set to full
        self.actvMap = maps.InjectActiveCells(mesh, actv, np.nan)

        # Creat reduced identity map
        idenMap = maps.IdentityMap(nP=nC * 3)

        # Create the forward model operator
        sim = mag.Simulation3DIntegral(
            self.mesh,
            survey=survey,
            model_type="vector",
            chiMap=idenMap,
            actInd=actv,
            store_sensitivities="disk",
        )
        self.sim = sim

        # Compute some data and add some random noise
        data = sim.make_synthetic_data(utils.mkvc(self.model),
                                       relative_error=0.0,
                                       noise_floor=5.0,
                                       add_noise=True)

        # This Mapping connects the regularizations for the three-component
        # vector model
        wires = maps.Wires(("p", nC), ("s", nC), ("t", nC))

        # Create three regularization for the different components
        # of magnetization
        reg_p = regularization.Sparse(mesh, indActive=actv, mapping=wires.p)
        reg_p.mref = np.zeros(3 * nC)

        reg_s = regularization.Sparse(mesh, indActive=actv, mapping=wires.s)
        reg_s.mref = np.zeros(3 * nC)

        reg_t = regularization.Sparse(mesh, indActive=actv, mapping=wires.t)
        reg_t.mref = np.zeros(3 * nC)

        reg = reg_p + reg_s + reg_t
        reg.mref = np.zeros(3 * nC)

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=sim, data=data)
        # dmis.W = 1./survey.std

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(maxIter=10,
                                         lower=-10,
                                         upper=10.0,
                                         maxIterLS=5,
                                         maxIterCG=5,
                                         tolCG=1e-4)

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        # A list of directive to control the inverson
        betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e1)

        # Here is where the norms are applied
        # Use pick a treshold parameter empirically based on the distribution of
        #  model parameters
        IRLS = directives.Update_IRLS(f_min_change=1e-3,
                                      max_irls_iterations=0,
                                      beta_tol=5e-1)

        # Pre-conditioner
        update_Jacobi = directives.UpdatePreconditioner()
        sensitivity_weights = directives.UpdateSensitivityWeights(
            everyIter=False)
        inv = inversion.BaseInversion(
            invProb,
            directiveList=[sensitivity_weights, IRLS, update_Jacobi, betaest])

        # Run the inversion
        m0 = np.ones(3 * nC) * 1e-4  # Starting model
        mrec_MVIC = inv.run(m0)

        sim.chiMap = maps.SphericalSystem(nP=nC * 3)
        self.mstart = sim.chiMap.inverse(mrec_MVIC)
        dmis.simulation.model = self.mstart
        beta = invProb.beta

        # Create a block diagonal regularization
        wires = maps.Wires(("amp", nC), ("theta", nC), ("phi", nC))

        # Create a Combo Regularization
        # Regularize the amplitude of the vectors
        reg_a = regularization.Sparse(mesh, indActive=actv, mapping=wires.amp)
        reg_a.norms = np.c_[0.0, 0.0, 0.0,
                            0.0]  # Sparse on the model and its gradients
        reg_a.mref = np.zeros(3 * nC)

        # Regularize the vertical angle of the vectors
        reg_t = regularization.Sparse(mesh,
                                      indActive=actv,
                                      mapping=wires.theta)
        reg_t.alpha_s = 0.0  # No reference angle
        reg_t.space = "spherical"
        reg_t.norms = np.c_[2.0, 0.0, 0.0, 0.0]  # Only norm on gradients used

        # Regularize the horizontal angle of the vectors
        reg_p = regularization.Sparse(mesh, indActive=actv, mapping=wires.phi)
        reg_p.alpha_s = 0.0  # No reference angle
        reg_p.space = "spherical"
        reg_p.norms = np.c_[2.0, 0.0, 0.0, 0.0]  # Only norm on gradients used

        reg = reg_a + reg_t + reg_p
        reg.mref = np.zeros(3 * nC)

        Lbound = np.kron(np.asarray([0, -np.inf, -np.inf]), np.ones(nC))
        Ubound = np.kron(np.asarray([10, np.inf, np.inf]), np.ones(nC))

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(
            maxIter=5,
            lower=Lbound,
            upper=Ubound,
            maxIterLS=5,
            maxIterCG=5,
            tolCG=1e-3,
            stepOffBoundsFact=1e-3,
        )
        opt.approxHinv = None

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=beta)

        # Here is where the norms are applied
        IRLS = directives.Update_IRLS(
            f_min_change=1e-4,
            max_irls_iterations=5,
            minGNiter=1,
            beta_tol=0.5,
            coolingRate=1,
            coolEps_q=True,
            sphericalDomain=True,
        )

        # Special directive specific to the mag amplitude problem. The sensitivity
        # weights are update between each iteration.
        ProjSpherical = directives.ProjectSphericalBounds()
        sensitivity_weights = directives.UpdateSensitivityWeights()
        update_Jacobi = directives.UpdatePreconditioner()

        self.inv = inversion.BaseInversion(
            invProb,
            directiveList=[
                ProjSpherical, IRLS, sensitivity_weights, update_Jacobi
            ],
        )
Exemple #7
0
    def setUp(self):

        ndv = -100
        # Create a self.mesh
        dx = 5.0

        hxind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hyind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hzind = [(dx, 5, -1.3), (dx, 6)]

        self.mesh = discretize.TensorMesh([hxind, hyind, hzind], "CCC")

        # Get index of the center
        midx = int(self.mesh.nCx / 2)
        midy = int(self.mesh.nCy / 2)

        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(self.mesh.vectorNx, self.mesh.vectorNy)
        zz = -np.exp((xx**2 + yy**2) / 75**2) + self.mesh.vectorNz[-1]

        # Go from topo to actv cells
        topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]
        actv = utils.surface2ind_topo(self.mesh, topo, "N")
        actv = np.where(actv)[0]

        # Create active map to go from reduce space to full
        self.actvMap = maps.InjectActiveCells(self.mesh, actv, -100)
        nC = len(actv)

        # Create and array of observation points
        xr = np.linspace(-20.0, 20.0, 20)
        yr = np.linspace(-20.0, 20.0, 20)
        X, Y = np.meshgrid(xr, yr)

        # Move the observation points 5m above the topo
        Z = -np.exp((X**2 + Y**2) / 75**2) + self.mesh.vectorNz[-1] + 5.0

        # Create a MAGsurvey
        locXYZ = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
        rxLoc = gravity.Point(locXYZ)
        srcField = gravity.SourceField([rxLoc])
        survey = gravity.Survey(srcField)

        # We can now create a density model and generate data
        # Here a simple block in half-space
        model = np.zeros((self.mesh.nCx, self.mesh.nCy, self.mesh.nCz))
        model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.5
        model = utils.mkvc(model)
        self.model = model[actv]

        # Create active map to go from reduce set to full
        actvMap = maps.InjectActiveCells(self.mesh, actv, ndv)

        # Create reduced identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create the forward model operator
        sim = gravity.Simulation3DIntegral(
            self.mesh,
            survey=survey,
            rhoMap=idenMap,
            actInd=actv,
            store_sensitivities="ram",
        )

        # Compute linear forward operator and compute some data
        # computing sensitivities to ram is best using dask processes
        with dask.config.set(scheduler="processes"):
            data = sim.make_synthetic_data(self.model,
                                           relative_error=0.0,
                                           noise_floor=0.001,
                                           add_noise=True)
        print(sim.G)

        # Create a regularization
        reg = regularization.Sparse(self.mesh, indActive=actv, mapping=idenMap)
        reg.norms = np.c_[0, 0, 0, 0]
        reg.gradientType = "component"
        # reg.eps_p, reg.eps_q = 5e-2, 1e-2

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=sim, data=data)

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(maxIter=100,
                                         lower=-1.0,
                                         upper=1.0,
                                         maxIterLS=20,
                                         maxIterCG=10,
                                         tolCG=1e-3)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e8)

        # Here is where the norms are applied
        IRLS = directives.Update_IRLS(f_min_change=1e-4, minGNiter=1)
        update_Jacobi = directives.UpdatePreconditioner()
        sensitivity_weights = directives.UpdateSensitivityWeights(
            everyIter=False)
        self.inv = inversion.BaseInversion(
            invProb, directiveList=[IRLS, sensitivity_weights, update_Jacobi])
        self.sim = sim
Exemple #8
0
def run(plotIt=True):

    cs, ncx, ncz, npad = 5.0, 25, 15, 15
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = discretize.CylMesh([hx, 1, hz], "00C")

    active = mesh.vectorCCz < 0.0
    layer = (mesh.vectorCCz < 0.0) & (mesh.vectorCCz >= -100.0)
    actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap
    sig_half = 2e-3
    sig_air = 1e-8
    sig_layer = 1e-3
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer
    mtrue = np.log(sigma[active])

    rxOffset = 1e-3
    rx = time_domain.Rx.PointMagneticFluxTimeDerivative(
        np.array([[rxOffset, 0.0, 30]]), np.logspace(-5, -3, 31), "z"
    )
    src = time_domain.Src.MagDipole([rx], location=np.array([0.0, 0.0, 80]))
    survey = time_domain.Survey([src])
    time_steps = [(1e-06, 20), (1e-05, 20), (0.0001, 20)]
    simulation = time_domain.Simulation3DElectricField(
        mesh, sigmaMap=mapping, survey=survey, time_steps=time_steps
    )
    # d_true = simulation.dpred(mtrue)

    # create observed data
    rel_err = 0.05
    data = simulation.make_synthetic_data(mtrue, relative_error=rel_err)

    dmisfit = data_misfit.L2DataMisfit(simulation=simulation, data=data)
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Tikhonov(regMesh, alpha_s=1e-2, alpha_x=1.0)
    opt = optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Create an inversion object
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    inv = inversion.BaseInversion(invProb, directiveList=[beta, betaest])
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    simulation.counter = opt.counter = utils.Counter()
    opt.remember("xc")

    mopt = inv.run(m0)

    if plotIt:
        fig, ax = plt.subplots(1, 2, figsize=(10, 6))
        ax[0].loglog(rx.times, -invProb.dpred, "b.-")
        ax[0].loglog(rx.times, -data.dobs, "r.-")
        ax[0].legend(("Noisefree", "$d^{obs}$"), fontsize=16)
        ax[0].set_xlabel("Time (s)", fontsize=14)
        ax[0].set_ylabel("$B_z$ (T)", fontsize=16)
        ax[0].set_xlabel("Time (s)", fontsize=14)
        ax[0].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5)

        plt.semilogx(sigma[active], mesh.vectorCCz[active])
        plt.semilogx(np.exp(mopt), mesh.vectorCCz[active])
        ax[1].set_ylim(-600, 0)
        ax[1].set_xlim(1e-4, 1e-2)
        ax[1].set_xlabel("Conductivity (S/m)", fontsize=14)
        ax[1].set_ylabel("Depth (m)", fontsize=14)
        ax[1].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5)
        plt.legend(["$\sigma_{true}$", "$\sigma_{pred}$"])
Exemple #9
0
    beta_schedule,
    save_iteration,
    target_misfit,
    update_jacobi,
]

#########################################################
# Running the DC Inversion
# ------------------------
#
# To define the inversion object, we need to define the inversion problem and
# the set of directives. We can then run the inversion.
#

# Here we combine the inverse problem and the set of directives
dc_inversion = inversion.BaseInversion(dc_inverse_problem,
                                       directiveList=directives_list)

# Run inversion
recovered_conductivity_model = dc_inversion.run(starting_conductivity_model)

###############################################################
# Recreate True Conductivity Model
# --------------------------------
#

background_value = 1e-2
conductor_value = 1e-1
resistor_value = 1e-3
true_conductivity_model = background_value * np.ones(nC)

ind_conductor = model_builder.getIndicesSphere(
def resolve_1Dinversions(
    mesh,
    dobs,
    src_height,
    freqs,
    m0,
    mref,
    mapping,
    relative=0.08,
    floor=1e-14,
    rxOffset=7.86,
):
    """
    Perform a single 1D inversion for a RESOLVE sounding for Horizontal
    Coplanar Coil data (both real and imaginary).

    :param discretize.CylMesh mesh: mesh used for the forward simulation
    :param numpy.ndarray dobs: observed data
    :param float src_height: height of the source above the ground
    :param numpy.ndarray freqs: frequencies
    :param numpy.ndarray m0: starting model
    :param numpy.ndarray mref: reference model
    :param maps.IdentityMap mapping: mapping that maps the model to electrical conductivity
    :param float relative: percent error used to construct the data misfit term
    :param float floor: noise floor used to construct the data misfit term
    :param float rxOffset: offset between source and receiver.
    """

    # ------------------- Forward Simulation ------------------- #
    # set up the receivers
    bzr = FDEM.Rx.PointMagneticFluxDensitySecondary(np.array(
        [[rxOffset, 0.0, src_height]]),
                                                    orientation="z",
                                                    component="real")

    bzi = FDEM.Rx.PointMagneticFluxDensity(np.array(
        [[rxOffset, 0.0, src_height]]),
                                           orientation="z",
                                           component="imag")

    # source location
    srcLoc = np.array([0.0, 0.0, src_height])
    srcList = [
        FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z")
        for freq in freqs
    ]

    # construct a forward simulation
    survey = FDEM.Survey(srcList)
    prb = FDEM.Simulation3DMagneticFluxDensity(mesh,
                                               sigmaMap=mapping,
                                               Solver=PardisoSolver)
    prb.survey = survey

    # ------------------- Inversion ------------------- #
    # data misfit term
    uncert = abs(dobs) * relative + floor
    dat = data.Data(dobs=dobs, standard_deviation=uncert)
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=dat)

    # regularization
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Simple(regMesh)
    reg.mref = mref

    # optimization
    opt = optimization.InexactGaussNewton(maxIter=10)

    # statement of the inverse problem
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion directives and parameters
    target = directives.TargetMisfit()
    inv = inversion.BaseInversion(invProb, directiveList=[target])

    invProb.beta = 2.0  # Fix beta in the nonlinear iterations
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.0
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # run the inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred, survey.dobs
Exemple #11
0
alphas = directives.AlphasSmoothEstimate_ByEig(alpha0_ratio=alpha0_ratio,
                                               n_pw_iter=10,
                                               verbose=True)
beta = directives.BetaEstimate_ByEig(beta0_ratio=1e-5, n_pw_iter=10)
betaIt = directives.PGI_BetaAlphaSchedule(
    verbose=True,
    coolingFactor=2.0,
    progress=0.2,
)
targets = directives.MultiTargetMisfits(verbose=True)
petrodir = directives.PGI_UpdateParameters(update_gmm=False)

# Setup Inversion
inv = inversion.BaseInversion(
    invProb,
    directiveList=[
        alphas, scales, beta, petrodir, targets, betaIt, scaling_schedule
    ],
)

mcluster_map = inv.run(minit)

# Inversion with no nonlinear mapping
reg_simple_no_map = utils.make_SimplePGI_regularization(
    mesh=mesh,
    gmmref=clfnomapping,
    gmm=clfnomapping,
    approx_gradient=True,
    alpha_x=1.0,
    wiresmap=wires,
    cell_weights_list=[wr1, wr2],
)
    def setUp(self):

        cs = 25.0
        hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hy = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hz = [(cs, 0, -1.3), (cs, 20), (cs, 0, 1.3)]
        mesh = discretize.TensorMesh([hx, hy, hz], x0="CCC")
        blkind0 = utils.model_builder.getIndicesSphere(
            np.r_[-100.0, -100.0, -200.0], 75.0, mesh.gridCC)
        blkind1 = utils.model_builder.getIndicesSphere(
            np.r_[100.0, 100.0, -200.0], 75.0, mesh.gridCC)
        sigma = np.ones(mesh.nC) * 1e-2
        airind = mesh.gridCC[:, 2] > 0.0
        sigma[airind] = 1e-8
        eta = np.zeros(mesh.nC)
        tau = np.ones_like(sigma) * 1.0
        c = np.ones_like(sigma) * 0.5

        eta[blkind0] = 0.1
        eta[blkind1] = 0.1
        tau[blkind0] = 0.1
        tau[blkind1] = 0.01

        actmapeta = maps.InjectActiveCells(mesh, ~airind, 0.0)
        actmaptau = maps.InjectActiveCells(mesh, ~airind, 1.0)
        actmapc = maps.InjectActiveCells(mesh, ~airind, 1.0)

        x = mesh.vectorCCx[(mesh.vectorCCx > -155.0)
                           & (mesh.vectorCCx < 155.0)]
        y = mesh.vectorCCy[(mesh.vectorCCy > -155.0)
                           & (mesh.vectorCCy < 155.0)]
        Aloc = np.r_[-200.0, 0.0, 0.0]
        Bloc = np.r_[200.0, 0.0, 0.0]
        M = utils.ndgrid(x - 25.0, y, np.r_[0.0])
        N = utils.ndgrid(x + 25.0, y, np.r_[0.0])

        times = np.arange(10) * 1e-3 + 1e-3
        rx = sip.receivers.Dipole(M, N, times)
        src = sip.sources.Dipole([rx], Aloc, Bloc)
        survey = sip.Survey([src])

        wires = maps.Wires(("eta", actmapeta.nP), ("taui", actmaptau.nP),
                           ("c", actmapc.nP))
        problem = sip.Simulation3DNodal(
            mesh,
            survey=survey,
            sigma=sigma,
            etaMap=actmapeta * wires.eta,
            tauiMap=actmaptau * wires.taui,
            cMap=actmapc * wires.c,
            actinds=~airind,
            storeJ=False,
            verbose=False,
        )

        problem.solver = Solver
        mSynth = np.r_[eta[~airind], 1.0 / tau[~airind], c[~airind]]
        dobs = problem.make_synthetic_data(mSynth, add_noise=True)
        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(data=dobs, simulation=problem)
        reg_eta = regularization.Sparse(mesh,
                                        mapping=wires.eta,
                                        indActive=~airind)
        reg_taui = regularization.Sparse(mesh,
                                         mapping=wires.taui,
                                         indActive=~airind)
        reg_c = regularization.Sparse(mesh, mapping=wires.c, indActive=~airind)
        reg = reg_eta + reg_taui + reg_c
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
        self.dobs = dobs
Exemple #13
0
def run_inversion(
    m0,
    survey,
    actind,
    mesh,
    wires,
    std,
    eps,
    maxIter=15,
    beta0_ratio=1e0,
    coolingFactor=2,
    coolingRate=2,
    maxIterLS=20,
    maxIterCG=10,
    LSshorten=0.5,
    eta_lower=1e-5,
    eta_upper=1,
    tau_lower=1e-6,
    tau_upper=10.0,
    c_lower=1e-2,
    c_upper=1.0,
    is_log_tau=True,
    is_log_c=True,
    is_log_eta=True,
    mref=None,
    alpha_s=1e-4,
    alpha_x=1e0,
    alpha_y=1e0,
    alpha_z=1e0,
):
    """
    Run Spectral Spectral IP inversion
    """
    dmisfit = data_misfit.L2DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1.0 / uncert
    # Map for a regularization
    # Related to inversion

    # Set Upper and Lower bounds
    e = np.ones(actind.sum())

    if np.isscalar(eta_lower):
        eta_lower = e * eta_lower
    if np.isscalar(tau_lower):
        tau_lower = e * tau_lower
    if np.isscalar(c_lower):
        c_lower = e * c_lower

    if np.isscalar(eta_upper):
        eta_upper = e * eta_upper
    if np.isscalar(tau_upper):
        tau_upper = e * tau_upper
    if np.isscalar(c_upper):
        c_upper = e * c_upper

    if is_log_eta:
        eta_upper = np.log(eta_upper)
        eta_lower = np.log(eta_lower)

    if is_log_tau:
        tau_upper = np.log(tau_upper)
        tau_lower = np.log(tau_lower)

    if is_log_c:
        c_upper = np.log(c_upper)
        c_lower = np.log(c_lower)

    m_upper = np.r_[eta_upper, tau_upper, c_upper]
    m_lower = np.r_[eta_lower, tau_lower, c_lower]

    # Set up regularization
    reg_eta = regularization.Simple(mesh, mapping=wires.eta, indActive=actind)
    reg_tau = regularization.Simple(mesh, mapping=wires.tau, indActive=actind)
    reg_c = regularization.Simple(mesh, mapping=wires.c, indActive=actind)

    # Todo:

    reg_eta.alpha_s = alpha_s
    reg_tau.alpha_s = 0.0
    reg_c.alpha_s = 0.0

    reg_eta.alpha_x = alpha_x
    reg_tau.alpha_x = alpha_x
    reg_c.alpha_x = alpha_x

    reg_eta.alpha_y = alpha_y
    reg_tau.alpha_y = alpha_y
    reg_c.alpha_y = alpha_y

    reg_eta.alpha_z = alpha_z
    reg_tau.alpha_z = alpha_z
    reg_c.alpha_z = alpha_z

    reg = reg_eta + reg_tau + reg_c

    # Use Projected Gauss Newton scheme
    opt = optimization.ProjectedGNCG(
        maxIter=maxIter,
        upper=m_upper,
        lower=m_lower,
        maxIterLS=maxIterLS,
        maxIterCG=maxIterCG,
        LSshorten=LSshorten,
    )
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=coolingFactor, coolingRate=coolingRate)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio)
    target = directives.TargetMisfit()

    directiveList = [beta, betaest, target]

    inv = inversion.BaseInversion(invProb, directiveList=directiveList)
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred
Exemple #14
0
def run(plotIt=True, survey_type="dipole-dipole", p=0.0, qx=2.0, qz=2.0):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = gen_DCIPsurvey(endl,
                            survey_type=survey_type,
                            dim=2,
                            a=10,
                            b=10,
                            n=10)
    survey = IO.from_abmn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = genTopography(mesh, -10, 0, its=100)
    actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5,
                                                      mesh.gridCC)
    blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0],
                                                      12.5, mesh.gridCC)
    layer_inds = mesh.gridCC[:, 1] > -5.0
    sigma = np.ones(mesh.nC) * 1.0 / 100.0
    sigma[blk_inds_c] = 1.0 / 10.0
    sigma[blk_inds_r] = 1.0 / 1000.0
    sigma[~actind] = 1.0 / 1e8
    rho = 1.0 / sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            temp,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect("equal")
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               Solver=Solver,
                               verbose=True)

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    IO.data_dc = data.dobs
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data=data.dobs / IO.G,
                             data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(data.dobs / IO.G, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP) * np.log(100.0)

    # Set standard_deviation
    # floor
    eps = 10**(-3.2)
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    regmap = maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = regularization.Sparse(mesh,
                                indActive=actind,
                                mapping=regmap,
                                gradientType="components")
    #     gradientType = 'components'
    reg.norms = np.c_[p, qx, qz, 0.0]
    IRLS = directives.Update_IRLS(max_irls_iterations=20,
                                  minGNiter=1,
                                  beta_search=False,
                                  fix_Jmatrix=True)

    opt = optimization.InexactGaussNewton(maxIter=40)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(invProb, directiveList=[betaest, IRLS])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    rho_est = mapping * mopt
    rho_est_l2 = mapping * invProb.l2model
    rho_est[~actind] = np.nan
    rho_est_l2[~actind] = np.nan
    rho_true = rho.copy()
    rho_true[~actind] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(3, 1, figsize=(20, 9))
        out1 = mesh.plotImage(
            rho_true,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[0],
        )
        out2 = mesh.plotImage(
            rho_est_l2,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[1],
        )
        out3 = mesh.plotImage(
            rho_est,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[2],
        )

        out = [out1, out2, out3]
        titles = ["True", "L2", ("L%d, Lx%d, Lz%d") % (p, qx, qz)]
        for i in range(3):
            ax[i].plot(survey.electrode_locations[:, 0],
                       survey.electrode_locations[:, 1], "kv")
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect("equal")
            ax[i].set_title(titles[i])
        plt.tight_layout()
        plt.show()
betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e1)

# Add sensitivity weights
sensitivity_weights = directives.UpdateSensitivityWeights()

# Here is where the norms are applied
# Use a threshold parameter empirically based on the distribution of
#  model parameters
IRLS = directives.Update_IRLS(f_min_change=1e-3,
                              max_irls_iterations=2,
                              beta_tol=5e-1)

# Pre-conditioner
update_Jacobi = directives.UpdatePreconditioner()

inv = inversion.BaseInversion(
    invProb, directiveList=[sensitivity_weights, IRLS, update_Jacobi, betaest])

# Run the inversion
mrec_MVIC = inv.run(m0)

###############################################################
# Sparse Vector Inversion
# -----------------------
#
# Re-run the MVI in the spherical domain so we can impose
# sparsity in the vectors.
#
#

spherical_map = maps.SphericalSystem()
m_start = utils.mat_utils.cartesian2spherical(
Exemple #16
0
def setup_and_run_std_inv(mesh, dc_survey, dc_data, std_dc, conductivity_map,
                          ind_active, starting_conductivity_model):
    """Code to setup and run a standard inversion.

    Parameters
    ----------
    mesh : TYPE
        DESCRIPTION.
    dc_survey : TYPE
        DESCRIPTION.
    dc_data : TYPE
        DESCRIPTION.
    std_dc : TYPE
        DESCRIPTION.
    conductivity_map : TYPE
        DESCRIPTION.
    ind_active : TYPE
        DESCRIPTION.
    starting_conductivity_model : TYPE
        DESCRIPTION.

    Returns
    -------
    save_iteration : TYPE
        DESCRIPTION.
    save_dict_iteration : TYPE
        DESCRIPTION.
    """
    # Add standard deviations to data object
    dc_data.standard_deviation = std_dc

    # Define the simulation (physics of the problem)
    dc_simulation = dc.simulation_2d.Simulation2DNodal(
        mesh, survey=dc_survey, sigmaMap=conductivity_map, Solver=Solver)

    # Define the data misfit.
    dc_data_misfit = data_misfit.L2DataMisfit(data=dc_data,
                                              simulation=dc_simulation)

    # Define the regularization (model objective function)
    dc_regularization = regularization.Simple(mesh,
                                              indActive=ind_active,
                                              mref=starting_conductivity_model,
                                              alpha_s=0.01,
                                              alpha_x=1,
                                              alpha_y=1)

    # Define how the optimization problem is solved. Here we will use a
    # projected. Gauss-Newton approach that employs the conjugate gradient
    # solver.
    dc_optimization = optimization.ProjectedGNCG(maxIter=15,
                                                 lower=-np.inf,
                                                 upper=np.inf,
                                                 maxIterLS=20,
                                                 maxIterCG=10,
                                                 tolCG=1e-3)

    # Here we define the inverse problem that is to be solved
    dc_inverse_problem = inverse_problem.BaseInvProblem(
        dc_data_misfit, dc_regularization, dc_optimization)

    # Define inversion directives

    # Apply and update sensitivity weighting as the model updates
    update_sensitivity_weighting = directives.UpdateSensitivityWeights()

    # Defining a starting value for the trade-off parameter (beta) between the
    # data misfit and the regularization.
    starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=1e2)

    # Set the rate of reduction in trade-off parameter (beta) each time the
    # the inverse problem is solved. And set the number of Gauss-Newton
    # iterations for each trade-off paramter value.
    beta_schedule = directives.BetaSchedule(coolingFactor=10, coolingRate=1)

    # Options for outputting recovered models and predicted data for each beta.
    save_iteration = directives.SaveOutputEveryIteration(save_txt=False)

    # save results from each iteration in a dict
    save_dict_iteration = directives.SaveOutputDictEveryIteration(
        saveOnDisk=False)

    directives_list = [
        update_sensitivity_weighting,
        starting_beta,
        beta_schedule,
        save_iteration,
        save_dict_iteration,
    ]

    # Here we combine the inverse problem and the set of directives
    dc_inversion = inversion.BaseInversion(dc_inverse_problem,
                                           directiveList=directives_list)

    # Run inversion
    _ = dc_inversion.run(starting_conductivity_model)

    return save_iteration, save_dict_iteration
def run(plotIt=True):

    nC = 40
    de = 1.0
    h = np.ones(nC) * de / nC
    M = discretize.TensorMesh([h, h])

    y = np.linspace(M.vectorCCy[0], M.vectorCCx[-1], int(np.floor(nC / 4)))
    rlocs = np.c_[0 * y + M.vectorCCx[-1], y]
    rx = tomo.Rx(rlocs)

    source_list = [
        tomo.Src(location=np.r_[M.vectorCCx[0], yi], receiver_list=[rx])
        for yi in y
    ]

    # phi model
    phi0 = 0
    phi1 = 0.65
    phitrue = utils.model_builder.defineBlock(M.gridCC, [0.4, 0.6], [0.6, 0.4],
                                              [phi1, phi0])

    knownVolume = np.sum(phitrue * M.vol)
    print("True Volume: {}".format(knownVolume))

    # Set up true conductivity model and plot the model transform
    sigma0 = np.exp(1)
    sigma1 = 1e4

    if plotIt:
        fig, ax = plt.subplots(1, 1)
        sigmaMapTest = maps.SelfConsistentEffectiveMedium(nP=1000,
                                                          sigma0=sigma0,
                                                          sigma1=sigma1,
                                                          rel_tol=1e-1,
                                                          maxIter=150)
        testphis = np.linspace(0.0, 1.0, 1000)

        sigetest = sigmaMapTest * testphis
        ax.semilogy(testphis, sigetest)
        ax.set_title("Model Transform")
        ax.set_xlabel("$\\varphi$")
        ax.set_ylabel("$\sigma$")

    sigmaMap = maps.SelfConsistentEffectiveMedium(M,
                                                  sigma0=sigma0,
                                                  sigma1=sigma1)

    # scale the slowness so it is on a ~linear scale
    slownessMap = maps.LogMap(M) * sigmaMap

    # set up the true sig model and log model dobs
    sigtrue = sigmaMap * phitrue

    # modt = Model.BaseModel(M);
    slownesstrue = slownessMap * phitrue  # true model (m = log(sigma))

    # set up the problem and survey
    survey = tomo.Survey(source_list)
    problem = tomo.Simulation(M, survey=survey, slownessMap=slownessMap)

    if plotIt:
        fig, ax = plt.subplots(1, 1)
        cb = plt.colorbar(M.plotImage(phitrue, ax=ax)[0], ax=ax)
        survey.plot(ax=ax)
        cb.set_label("$\\varphi$")

    # get observed data
    data = problem.make_synthetic_data(phitrue,
                                       relative_error=0.03,
                                       add_noise=True)
    dpred = problem.dpred(np.zeros(M.nC))

    # objective function pieces
    reg = regularization.Tikhonov(M)
    dmis = data_misfit.L2DataMisfit(simulation=problem, data=data)
    dmisVol = Volume(mesh=M, knownVolume=knownVolume)
    beta = 0.25
    maxIter = 15

    # without the volume regularization
    opt = optimization.ProjectedGNCG(maxIter=maxIter, lower=0.0, upper=1.0)
    opt.remember("xc")
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=beta)
    inv = inversion.BaseInversion(invProb)

    mopt1 = inv.run(np.zeros(M.nC) + 1e-16)
    print("\nTotal recovered volume (no vol misfit term in inversion): "
          "{}".format(dmisVol(mopt1)))

    # with the volume regularization
    vol_multiplier = 9e4
    reg2 = reg
    dmis2 = dmis + vol_multiplier * dmisVol
    opt2 = optimization.ProjectedGNCG(maxIter=maxIter, lower=0.0, upper=1.0)
    opt2.remember("xc")
    invProb2 = inverse_problem.BaseInvProblem(dmis2, reg2, opt2, beta=beta)
    inv2 = inversion.BaseInversion(invProb2)

    mopt2 = inv2.run(np.zeros(M.nC) + 1e-16)
    print("\nTotal volume (vol misfit term in inversion): {}".format(
        dmisVol(mopt2)))

    # plot results

    if plotIt:

        fig, ax = plt.subplots(1, 1)
        ax.plot(data.dobs)
        ax.plot(dpred)
        ax.plot(problem.dpred(mopt1), "o")
        ax.plot(problem.dpred(mopt2), "s")
        ax.legend(["dobs", "dpred0", "dpred w/o Vol", "dpred with Vol"])

        fig, ax = plt.subplots(1, 3, figsize=(16, 4))
        im0 = M.plotImage(phitrue, ax=ax[0])[0]
        im1 = M.plotImage(mopt1, ax=ax[1])[0]
        im2 = M.plotImage(mopt2, ax=ax[2])[0]

        for im in [im0, im1, im2]:
            im.set_clim([0.0, phi1])

        plt.colorbar(im0, ax=ax[0])
        plt.colorbar(im1, ax=ax[1])
        plt.colorbar(im2, ax=ax[2])

        ax[0].set_title("true, vol: {:1.3e}".format(knownVolume))
        ax[1].set_title("recovered(no Volume term), vol: {:1.3e} ".format(
            dmisVol(mopt1)))
        ax[2].set_title("recovered(with Volume term), vol: {:1.3e} ".format(
            dmisVol(mopt2)))

        plt.tight_layout()
Exemple #18
0
    def setUp(self):

        np.random.seed(0)

        # First we need to define the direction of the inducing field
        # As a simple case, we pick a vertical inducing field of magnitude
        # 50,000nT.
        # From old convention, field orientation is given as an
        # azimuth from North (positive clockwise)
        # and dip from the horizontal (positive downward).
        H0 = (50000.0, 90.0, 0.0)

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100
        nCpad = [2, 4, 2]

        # Create grid of points for topography
        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(np.linspace(-200.0, 200.0, 50),
                               np.linspace(-200.0, 200.0, 50))

        b = 100
        A = 50
        zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0))

        # We would usually load a topofile
        topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

        # Create and array of observation points
        xr = np.linspace(-100.0, 100.0, 20)
        yr = np.linspace(-100.0, 100.0, 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 5

        # Create a MAGsurvey
        xyzLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
        rxLoc = mag.Point(xyzLoc)
        srcField = mag.SourceField([rxLoc], parameters=H0)
        survey = mag.Survey(srcField)

        # self.mesh.finalize()
        self.mesh = meshutils.mesh_builder_xyz(
            xyzLoc,
            h,
            padding_distance=padDist,
            mesh_type="TREE",
        )

        self.mesh = meshutils.refine_tree_xyz(
            self.mesh,
            topo,
            method="surface",
            octree_levels=nCpad,
            octree_levels_padding=nCpad,
            finalize=True,
        )

        # Define an active cells from topo
        actv = utils.surface2ind_topo(self.mesh, topo)
        nC = int(actv.sum())

        # We can now create a susceptibility model and generate data
        # Lets start with a simple block in half-space
        self.model = utils.model_builder.addBlock(
            self.mesh.gridCC,
            np.zeros(self.mesh.nC),
            np.r_[-20, -20, -15],
            np.r_[20, 20, 20],
            0.05,
        )[actv]

        # Create active map to go from reduce set to full
        self.actvMap = maps.InjectActiveCells(self.mesh, actv, np.nan)

        # Creat reduced identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create the forward model operator
        sim = mag.Simulation3DIntegral(
            self.mesh,
            survey=survey,
            chiMap=idenMap,
            actInd=actv,
            store_sensitivities="ram",
        )
        self.sim = sim
        data = sim.make_synthetic_data(self.model,
                                       relative_error=0.0,
                                       noise_floor=1.0,
                                       add_noise=True)

        # Create a regularization
        reg = regularization.Sparse(self.mesh, indActive=actv, mapping=idenMap)
        reg.norms = np.c_[0, 0, 0, 0]

        reg.mref = np.zeros(nC)

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=sim, data=data)

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(
            maxIter=10,
            lower=0.0,
            upper=10.0,
            maxIterLS=5,
            maxIterCG=5,
            tolCG=1e-4,
            stepOffBoundsFact=1e-4,
        )

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e6)

        # Here is where the norms are applied
        # Use pick a treshold parameter empirically based on the distribution of
        #  model parameters
        IRLS = directives.Update_IRLS(f_min_change=1e-3,
                                      max_irls_iterations=20,
                                      beta_tol=1e-1,
                                      beta_search=False)
        update_Jacobi = directives.UpdatePreconditioner()
        sensitivity_weights = directives.UpdateSensitivityWeights()
        self.inv = inversion.BaseInversion(
            invProb, directiveList=[IRLS, sensitivity_weights, update_Jacobi])
    def setUp(self):

        cs = 25.0
        hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hy = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hz = [(cs, 0, -1.3), (cs, 20)]
        mesh = discretize.TensorMesh([hx, hy, hz], x0="CCN")
        blkind0 = utils.model_builder.getIndicesSphere(
            np.r_[-100.0, -100.0, -200.0], 75.0, mesh.gridCC)
        blkind1 = utils.model_builder.getIndicesSphere(
            np.r_[100.0, 100.0, -200.0], 75.0, mesh.gridCC)
        sigma = np.ones(mesh.nC) * 1e-2
        eta = np.zeros(mesh.nC)
        tau = np.ones_like(sigma) * 1.0
        eta[blkind0] = 0.1
        eta[blkind1] = 0.1
        tau[blkind0] = 0.1
        tau[blkind1] = 0.01

        x = mesh.vectorCCx[(mesh.vectorCCx > -155.0)
                           & (mesh.vectorCCx < 155.0)]
        y = mesh.vectorCCy[(mesh.vectorCCy > -155.0)
                           & (mesh.vectorCCy < 155.0)]
        Aloc = np.r_[-200.0, 0.0, 0.0]
        Bloc = np.r_[200.0, 0.0, 0.0]
        M = utils.ndgrid(x - 25.0, y, np.r_[0.0])
        N = utils.ndgrid(x + 25.0, y, np.r_[0.0])

        times = np.arange(10) * 1e-3 + 1e-3
        rx = sip.receivers.Dipole(M, N, times)
        print(rx.nD)
        print(rx.locations)
        src = sip.sources.Dipole([rx], Aloc, Bloc)
        survey = sip.Survey([src])
        print(f"Survey ND = {survey.nD}")
        print(f"Survey ND = {src.nD}")

        wires = maps.Wires(("eta", mesh.nC), ("taui", mesh.nC))
        problem = sip.Simulation3DCellCentered(
            mesh,
            survey=survey,
            rho=1.0 / sigma,
            etaMap=wires.eta,
            tauiMap=wires.taui,
            storeJ=False,
        )
        problem.solver = Solver
        mSynth = np.r_[eta, 1.0 / tau]
        problem.model = mSynth
        dobs = problem.make_synthetic_data(mSynth, add_noise=True)
        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(data=dobs, simulation=problem)
        reg = regularization.Tikhonov(mesh)
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
        self.dobs = dobs
Exemple #20
0
def run(
    plotIt=True,
    survey_type="dipole-dipole",
    rho_background=1e3,
    rho_block=1e2,
    block_x0=100,
    block_dx=10,
    block_y0=-10,
    block_dy=5,
):

    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = DCutils.gen_DCIPsurvey(endl,
                                    survey_type=survey_type,
                                    dim=2,
                                    a=10,
                                    b=10,
                                    n=10)
    survey = IO.from_ambn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    # Flat topography
    actind = utils.surface2ind_topo(
        mesh, np.c_[mesh.vectorCCx, mesh.vectorCCx * 0.0])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")
    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    parametric_block = maps.ParametricBlock(mesh, slopeFact=1e2)
    mapping = maps.ExpMap(mesh) * parametric_block
    # Set true model
    # val_background,val_block, block_x0, block_dx, block_y0, block_dy
    mtrue = np.r_[np.log(1e3), np.log(10), 100, 10, -20, 10]

    # Set initial model
    m0 = np.r_[np.log(rho_background),
               np.log(rho_block), block_x0, block_dx, block_y0, block_dy, ]
    rho = mapping * mtrue
    rho0 = mapping * m0
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(
        temp,
        grid=False,
        ax=ax,
        gridOpts={"alpha": 0.2},
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
    )
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            "k.")
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect("equal")
    ax.set_title("True resistivity model")
    plt.show()
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho0.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(
        temp,
        grid=False,
        ax=ax,
        gridOpts={"alpha": 0.2},
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
    )
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            "k.")
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect("equal")
    ax.set_title("Initial resistivity model")
    plt.show()

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               solver=Solver)

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    # Show apparent resisitivty pseudo-section
    IO.plotPseudoSection(data=data.dobs / IO.G,
                         data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    fig = plt.figure()
    out = hist(data.dobs / IO.G, bins=20)
    plt.show()
    # Set standard_deviation
    # floor
    eps = 10**(-3.2)
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    mesh_1d = discretize.TensorMesh([parametric_block.nP])
    # Related to inversion
    reg = regularization.Simple(mesh_1d, alpha_x=0.0)
    opt = optimization.InexactGaussNewton(maxIter=10)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    updateSensW = directives.UpdateSensitivityWeights()
    update_Jacobi = directives.UpdatePreconditioner()
    invProb.beta = 0.0
    inv = inversion.BaseInversion(invProb, directiveList=[target])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt
    rho_true = rho.copy()
    # show recovered conductivity
    vmin, vmax = rho.min(), rho.max()
    fig, ax = plt.subplots(2, 1, figsize=(20, 6))
    out1 = mesh.plotImage(
        rho_true,
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
        ax=ax[0],
    )
    out2 = mesh.plotImage(
        rho_est,
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
        ax=ax[1],
    )
    out = [out1, out2]
    for i in range(2):
        ax[i].plot(survey.electrode_locations[:, 0],
                   survey.electrode_locations[:, 1], "kv")
        ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[i][0], ax=ax[i])
        cb.set_label("Resistivity ($\Omega$m)")
        ax[i].set_xlabel("Northing (m)")
        ax[i].set_ylabel("Elevation (m)")
        ax[i].set_aspect("equal")
    ax[0].set_title("True resistivity model")
    ax[1].set_title("Recovered resistivity model")
    plt.tight_layout()
    plt.show()
def run(plotIt=True, saveFig=False):

    # Set up cylindrically symmeric mesh
    cs, ncx, ncz, npad = 10.0, 15, 25, 13  # padded cyl mesh
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = discretize.CylMesh([hx, 1, hz], "00C")

    # Conductivity model
    layerz = np.r_[-200.0, -100.0]
    layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1])
    active = mesh.vectorCCz < 0.0
    sig_half = 1e-2  # Half-space conductivity
    sig_air = 1e-8  # Air conductivity
    sig_layer = 5e-2  # Layer conductivity
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer

    # Mapping
    actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap
    mtrue = np.log(sigma[active])

    # ----- FDEM problem & survey ----- #
    rxlocs = utils.ndgrid([np.r_[50.0], np.r_[0], np.r_[0.0]])
    bzr = FDEM.Rx.PointMagneticFluxDensitySecondary(rxlocs, "z", "real")
    bzi = FDEM.Rx.PointMagneticFluxDensitySecondary(rxlocs, "z", "imag")

    freqs = np.logspace(2, 3, 5)
    srcLoc = np.array([0.0, 0.0, 0.0])

    print(
        "min skin depth = ",
        500.0 / np.sqrt(freqs.max() * sig_half),
        "max skin depth = ",
        500.0 / np.sqrt(freqs.min() * sig_half),
    )
    print(
        "max x ",
        mesh.vectorCCx.max(),
        "min z ",
        mesh.vectorCCz.min(),
        "max z ",
        mesh.vectorCCz.max(),
    )

    source_list = [
        FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z") for freq in freqs
    ]

    surveyFD = FDEM.Survey(source_list)
    prbFD = FDEM.Simulation3DMagneticFluxDensity(
        mesh, survey=surveyFD, sigmaMap=mapping, solver=Solver
    )
    rel_err = 0.03
    dataFD = prbFD.make_synthetic_data(mtrue, relative_error=rel_err, add_noise=True)
    dataFD.noise_floor = np.linalg.norm(dataFD.dclean) * 1e-5

    # FDEM inversion
    np.random.seed(1)
    dmisfit = data_misfit.L2DataMisfit(simulation=prbFD, data=dataFD)
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Simple(regMesh)
    opt = optimization.InexactGaussNewton(maxIterCG=10)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives
    beta = directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1.0, seed=518936)
    target = directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.0
    prbFD.counter = opt.counter = utils.Counter()
    opt.remember("xc")
    moptFD = inv.run(m0)

    # TDEM problem
    times = np.logspace(-4, np.log10(2e-3), 10)
    print(
        "min diffusion distance ",
        1.28 * np.sqrt(times.min() / (sig_half * mu_0)),
        "max diffusion distance ",
        1.28 * np.sqrt(times.max() / (sig_half * mu_0)),
    )
    rx = TDEM.Rx.PointMagneticFluxDensity(rxlocs, times, "z")
    src = TDEM.Src.MagDipole(
        [rx],
        waveform=TDEM.Src.StepOffWaveform(),
        location=srcLoc,  # same src location as FDEM problem
    )

    surveyTD = TDEM.Survey([src])
    prbTD = TDEM.Simulation3DMagneticFluxDensity(
        mesh, survey=surveyTD, sigmaMap=mapping, solver=Solver
    )
    prbTD.time_steps = [(5e-5, 10), (1e-4, 10), (5e-4, 10)]

    rel_err = 0.03
    dataTD = prbTD.make_synthetic_data(mtrue, relative_error=rel_err, add_noise=True)
    dataTD.noise_floor = np.linalg.norm(dataTD.dclean) * 1e-5

    # TDEM inversion
    dmisfit = data_misfit.L2DataMisfit(simulation=prbTD, data=dataTD)
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Simple(regMesh)
    opt = optimization.InexactGaussNewton(maxIterCG=10)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # directives
    beta = directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1.0, seed=518936)
    target = directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.0
    prbTD.counter = opt.counter = utils.Counter()
    opt.remember("xc")
    moptTD = inv.run(m0)

    # Plot the results
    if plotIt:
        plt.figure(figsize=(10, 8))
        ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
        ax1 = plt.subplot2grid((2, 2), (0, 1))
        ax2 = plt.subplot2grid((2, 2), (1, 1))

        fs = 13  # fontsize
        matplotlib.rcParams["font.size"] = fs

        # Plot the model
        # z_true = np.repeat(mesh.vectorCCz[active][1:], 2, axis=0)
        # z_true = np.r_[mesh.vectorCCz[active][0], z_true, mesh.vectorCCz[active][-1]]
        activeN = mesh.vectorNz <= 0.0 + cs / 2.0
        z_true = np.repeat(mesh.vectorNz[activeN][1:-1], 2, axis=0)
        z_true = np.r_[mesh.vectorNz[activeN][0], z_true, mesh.vectorNz[activeN][-1]]
        sigma_true = np.repeat(sigma[active], 2, axis=0)

        ax0.semilogx(sigma_true, z_true, "k-", lw=2, label="True")

        ax0.semilogx(
            np.exp(moptFD),
            mesh.vectorCCz[active],
            "bo",
            ms=6,
            markeredgecolor="k",
            markeredgewidth=0.5,
            label="FDEM",
        )
        ax0.semilogx(
            np.exp(moptTD),
            mesh.vectorCCz[active],
            "r*",
            ms=10,
            markeredgecolor="k",
            markeredgewidth=0.5,
            label="TDEM",
        )
        ax0.set_ylim(-700, 0)
        ax0.set_xlim(5e-3, 1e-1)

        ax0.set_xlabel("Conductivity (S/m)", fontsize=fs)
        ax0.set_ylabel("Depth (m)", fontsize=fs)
        ax0.grid(which="both", color="k", alpha=0.5, linestyle="-", linewidth=0.2)
        ax0.legend(fontsize=fs, loc=4)

        # plot the data misfits - negative b/c we choose positive to be in the
        # direction of primary

        ax1.plot(freqs, -dataFD.dobs[::2], "k-", lw=2, label="Obs (real)")
        ax1.plot(freqs, -dataFD.dobs[1::2], "k--", lw=2, label="Obs (imag)")

        dpredFD = prbFD.dpred(moptTD)
        ax1.loglog(
            freqs,
            -dpredFD[::2],
            "bo",
            ms=6,
            markeredgecolor="k",
            markeredgewidth=0.5,
            label="Pred (real)",
        )
        ax1.loglog(
            freqs, -dpredFD[1::2], "b+", ms=10, markeredgewidth=2.0, label="Pred (imag)"
        )

        ax2.loglog(times, dataTD.dobs, "k-", lw=2, label="Obs")
        ax2.loglog(
            times,
            prbTD.dpred(moptTD),
            "r*",
            ms=10,
            markeredgecolor="k",
            markeredgewidth=0.5,
            label="Pred",
        )
        ax2.set_xlim(times.min() - 1e-5, times.max() + 1e-4)

        # Labels, gridlines, etc
        ax2.grid(which="both", alpha=0.5, linestyle="-", linewidth=0.2)
        ax1.grid(which="both", alpha=0.5, linestyle="-", linewidth=0.2)

        ax1.set_xlabel("Frequency (Hz)", fontsize=fs)
        ax1.set_ylabel("Vertical magnetic field (-T)", fontsize=fs)

        ax2.set_xlabel("Time (s)", fontsize=fs)
        ax2.set_ylabel("Vertical magnetic field (T)", fontsize=fs)

        ax2.legend(fontsize=fs, loc=3)
        ax1.legend(fontsize=fs, loc=3)
        ax1.set_xlim(freqs.max() + 1e2, freqs.min() - 1e1)

        ax0.set_title("(a) Recovered Models", fontsize=fs)
        ax1.set_title("(b) FDEM observed vs. predicted", fontsize=fs)
        ax2.set_title("(c) TDEM observed vs. predicted", fontsize=fs)

        plt.tight_layout(pad=1.5)

        if saveFig is True:
            plt.savefig("example1.png", dpi=600)
Exemple #22
0
#
# We estimate the trade-off parameter, beta, between the data
# misfit and regularization by the largest eigenvalue of the data misfit and
# the regularization. Here, we use a fixed beta, but could alternatively
# employ a beta-cooling schedule using :class:`SimPEG.directives.BetaSchedule`

dmisfit = data_misfit.L2DataMisfit(simulation=prob, data=data)
reg = regularization.Simple(inversion_mesh)
opt = optimization.InexactGaussNewton(maxIterCG=10, remember="xc")
invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

betaest = directives.BetaEstimate_ByEig(beta0_ratio=0.05, n_pw_iter=1, seed=1)
target = directives.TargetMisfit()

directiveList = [betaest, target]
inv = inversion.BaseInversion(invProb, directiveList=directiveList)

print("The target misfit is {:1.2f}".format(target.target))

###############################################################################
# Run the inversion
# ------------------
#
# We start from a half-space equal to the deep conductivity.

m0 = np.log(sigma_deep) * np.ones(inversion_mesh.nC)

t = time.time()
mrec = inv.run(m0)
print("\n Inversion Complete. Elapsed Time = {:1.2f} s".format(time.time() - t))
def run(plotIt=True, survey_type="dipole-dipole"):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = gen_DCIPsurvey(endl,
                            survey_type=survey_type,
                            dim=2,
                            a=10,
                            b=10,
                            n=10)
    survey = IO.from_ambn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = genTopography(mesh, -10, 0, its=100)
    actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5,
                                                      mesh.gridCC)
    blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0],
                                                      12.5, mesh.gridCC)
    layer_inds = mesh.gridCC[:, 1] > -5.0
    sigma = np.ones(mesh.nC) * 1.0 / 100.0
    sigma[blk_inds_c] = 1.0 / 10.0
    sigma[blk_inds_r] = 1.0 / 1000.0
    sigma[~actind] = 1.0 / 1e8
    rho = 1.0 / sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            temp,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect("equal")
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               Solver=Solver,
                               verbose=True)

    geometric_factor = survey.set_geometric_factor(
        data_type="apparent_resistivity",
        survey_type="dipole-dipole",
        space_type="half-space",
    )

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    IO.data_dc = data.dobs
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data=data.dobs, data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(data.dobs, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP) * np.log(100.0)

    # Set standard_deviation
    # floor (10 ohm-m)
    eps = 1.0
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    regmap = maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = regularization.Sparse(mesh, indActive=actind, mapping=regmap)
    opt = optimization.InexactGaussNewton(maxIter=15)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    updateSensW = directives.UpdateSensitivityWeights()
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(
        invProb,
        directiveList=[beta, target, updateSensW, betaest, update_Jacobi])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    # Get diag(JtJ)
    mask_inds = np.ones(mesh.nC, dtype=bool)
    jtj = np.sqrt(updateSensW.JtJdiag[0])
    jtj /= jtj.max()
    temp = np.ones_like(jtj, dtype=bool)
    temp[jtj > 0.005] = False
    mask_inds[actind] = temp
    actind_final = np.logical_and(actind, ~mask_inds)
    jtj_cc = np.ones(mesh.nC) * np.nan
    jtj_cc[actind] = jtj

    # Show the sensitivity
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            jtj_cc,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(0.005, 0.5),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Sensitivity")
        ax.set_aspect("equal")
        plt.show()

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt
    rho_est[~actind_final] = np.nan
    rho_true = rho.copy()
    rho_true[~actind_final] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(2, 1, figsize=(20, 6))
        out1 = mesh.plotImage(
            rho_true,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[0],
        )
        out2 = mesh.plotImage(
            rho_est,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[1],
        )
        out = [out1, out2]
        for i in range(2):
            ax[i].plot(survey.electrode_locations[:, 0],
                       survey.electrode_locations[:, 1], "kv")
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect("equal")
        plt.tight_layout()
        plt.show()
def run(plotIt=True):

    cs, ncx, ncz, npad = 5.0, 25, 24, 15
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = discretize.CylMesh([hx, 1, hz], "00C")

    active = mesh.vectorCCz < 0.0
    layer = (mesh.vectorCCz < -50.0) & (mesh.vectorCCz >= -150.0)
    actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap
    sig_half = 1e-3
    sig_air = 1e-8
    sig_layer = 1e-2
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer
    mtrue = np.log(sigma[active])

    x = np.r_[30, 50, 70, 90]
    rxloc = np.c_[x, x * 0.0, np.zeros_like(x)]

    prb = TDEM.Simulation3DMagneticFluxDensity(mesh,
                                               sigmaMap=mapping,
                                               solver=Solver)
    prb.time_steps = [
        (1e-3, 5),
        (1e-4, 5),
        (5e-5, 10),
        (5e-5, 5),
        (1e-4, 10),
        (5e-4, 10),
    ]
    # Use VTEM waveform
    out = EMutils.VTEMFun(prb.times, 0.00595, 0.006, 100)

    # Forming function handle for waveform using 1D linear interpolation
    wavefun = interp1d(prb.times, out)
    t0 = 0.006
    waveform = TDEM.Src.RawWaveform(offTime=t0, waveFct=wavefun)

    rx = TDEM.Rx.PointMagneticFluxTimeDerivative(
        rxloc,
        np.logspace(-4, -2.5, 11) + t0, "z")
    src = TDEM.Src.CircularLoop([rx],
                                waveform=waveform,
                                loc=np.array([0.0, 0.0, 0.0]),
                                radius=10.0)
    survey = TDEM.Survey([src])
    prb.survey = survey

    # create observed data
    data = prb.make_synthetic_data(mtrue,
                                   relative_error=0.02,
                                   noise_floor=1e-11)

    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Simple(regMesh)
    opt = optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    target = directives.TargetMisfit()
    # Create an inversion object
    beta = directives.BetaSchedule(coolingFactor=1.0, coolingRate=2.0)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    invProb.beta = 1e2
    inv = inversion.BaseInversion(invProb, directiveList=[beta, target])
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    prb.counter = opt.counter = utils.Counter()
    opt.remember("xc")
    mopt = inv.run(m0)

    if plotIt:
        fig, ax = plt.subplots(1, 2, figsize=(10, 6))
        Dobs = data.dobs.reshape((len(rx.times), len(x)))
        Dpred = invProb.dpred.reshape((len(rx.times), len(x)))
        for i in range(len(x)):
            ax[0].loglog(rx.times - t0, -Dobs[:, i].flatten(), "k")
            ax[0].loglog(rx.times - t0, -Dpred[:, i].flatten(), "k.")
            if i == 0:
                ax[0].legend(("$d^{obs}$", "$d^{pred}$"), fontsize=16)
        ax[0].set_xlabel("Time (s)", fontsize=14)
        ax[0].set_ylabel("$db_z / dt$ (nT/s)", fontsize=16)
        ax[0].set_xlabel("Time (s)", fontsize=14)
        ax[0].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5)

        plt.semilogx(sigma[active], mesh.vectorCCz[active])
        plt.semilogx(np.exp(mopt), mesh.vectorCCz[active])
        ax[1].set_ylim(-600, 0)
        ax[1].set_xlim(1e-4, 1e-1)
        ax[1].set_xlabel("Conductivity (S/m)", fontsize=14)
        ax[1].set_ylabel("Depth (m)", fontsize=14)
        ax[1].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5)
        plt.legend(["$\sigma_{true}$", "$\sigma_{pred}$"])
    update_sensitivity_weighting,
    update_IRLS,
    starting_beta,
    save_iteration,
]

#####################################################################
# Running the DC Inversion
# ------------------------
#
# To define the inversion object, we need to define the inversion problem and
# the set of directives. We can then run the inversion.
#

# Here we combine the inverse problem and the set of directives
dc_inversion = inversion.BaseInversion(inv_prob, directiveList=directives_list)

# Run inversion
recovered_conductivity_model = dc_inversion.run(starting_conductivity_model)

############################################################
# Plotting True and Recovered Conductivity Model
# ----------------------------------------------
#

# Load true conductivity model
true_conductivity_model = np.loadtxt(str(true_conductivity_filename))
true_conductivity_model_log10 = np.log10(true_conductivity_model[ind_active])

# Get L2 and sparse recovered model in base 10
l2_conductivity_model_log10 = np.log10(np.exp(inv_prob.l2model))
Exemple #26
0
# Here is where the norms are applied
# Use a threshold parameter empirically based on the distribution of
# model parameters
update_IRLS = directives.Update_IRLS(
    f_min_change=1e-4,
    max_irls_iterations=0,
    coolEpsFact=1.5,
    beta_tol=1e-2,
)
saveDict = directives.SaveOutputEveryIteration(save_txt=False)
update_Jacobi = directives.UpdatePreconditioner()
sensitivity_weights = directives.UpdateSensitivityWeights(everyIter=False)
inv = inversion.BaseInversion(
    invProb,
    directiveList=[
        update_IRLS, sensitivity_weights, betaest, update_Jacobi, saveDict
    ],
)

# Run the inversion
mrec = inv.run(m0)

# Plot the result
ax = plt.subplot(1, 2, 1)
mesh.plotSlice(inject_global * model, normal="Y", ax=ax, grid=True)
ax.set_title("True")
ax.set_aspect("equal")

ax = plt.subplot(1, 2, 2)
mesh.plotSlice(inject_global * mrec, normal="Y", ax=ax, grid=True)
ax.set_title("Recovered")
Exemple #27
0
    starting_beta,
    beta_schedule,
    save_iteration,
    update_jacobi,
]

#####################################################################
# Running the Inversion
# ---------------------
#
# To define the inversion object, we need to define the inversion problem and
# the set of directives. We can then run the inversion.
#

# Here we combine the inverse problem and the set of directives
inv = inversion.BaseInversion(inv_prob, directives_list)

# Run inversion
recovered_model = inv.run(starting_model)

############################################################
# Recreate True Model
# -------------------
#

# Define density contrast values for each unit in g/cc
background_density = 0.0
block_density = -0.2
sphere_density = 0.2

# Define model. Models in SimPEG are vector arrays.
def run(plotIt=True, saveFig=False, cleanup=True):
    """
    Run 1D inversions for a single sounding of the RESOLVE and SkyTEM
    bookpurnong data

    :param bool plotIt: show the plots?
    :param bool saveFig: save the figure
    :param bool cleanup: remove the downloaded results
    """
    downloads, directory = download_and_unzip_data()

    resolve = h5py.File(os.path.sep.join([directory, "booky_resolve.hdf5"]),
                        "r")
    skytem = h5py.File(os.path.sep.join([directory, "booky_skytem.hdf5"]), "r")
    river_path = resolve["river_path"].value

    # Choose a sounding location to invert
    xloc, yloc = 462100.0, 6196500.0
    rxind_skytem = np.argmin(
        abs(skytem["xy"][:, 0] - xloc) + abs(skytem["xy"][:, 1] - yloc))
    rxind_resolve = np.argmin(
        abs(resolve["xy"][:, 0] - xloc) + abs(resolve["xy"][:, 1] - yloc))

    # Plot both resolve and skytem data on 2D plane
    fig = plt.figure(figsize=(13, 6))
    title = ["RESOLVE In-phase 400 Hz", "SkyTEM High moment 156 $\mu$s"]
    ax1 = plt.subplot(121)
    ax2 = plt.subplot(122)
    axs = [ax1, ax2]
    out_re = utils.plot2Ddata(
        resolve["xy"],
        resolve["data"][:, 0],
        ncontour=100,
        contourOpts={"cmap": "viridis"},
        ax=ax1,
    )
    vmin, vmax = out_re[0].get_clim()
    cb_re = plt.colorbar(out_re[0],
                         ticks=np.linspace(vmin, vmax, 3),
                         ax=ax1,
                         fraction=0.046,
                         pad=0.04)
    temp_skytem = skytem["data"][:, 5].copy()
    temp_skytem[skytem["data"][:, 5] > 7e-10] = 7e-10
    out_sky = utils.plot2Ddata(
        skytem["xy"][:, :2],
        temp_skytem,
        ncontour=100,
        contourOpts={
            "cmap": "viridis",
            "vmax": 7e-10
        },
        ax=ax2,
    )
    vmin, vmax = out_sky[0].get_clim()
    cb_sky = plt.colorbar(
        out_sky[0],
        ticks=np.linspace(vmin, vmax * 0.99, 3),
        ax=ax2,
        format="%.1e",
        fraction=0.046,
        pad=0.04,
    )
    cb_re.set_label("Bz (ppm)")
    cb_sky.set_label("dB$_z$ / dt (V/A-m$^4$)")

    for i, ax in enumerate(axs):
        xticks = [460000, 463000]
        yticks = [6195000, 6198000, 6201000]
        ax.set_xticks(xticks)
        ax.set_yticks(yticks)
        ax.plot(xloc, yloc, "wo")
        ax.plot(river_path[:, 0], river_path[:, 1], "k", lw=0.5)

        ax.set_aspect("equal")
        if i == 1:
            ax.plot(skytem["xy"][:, 0],
                    skytem["xy"][:, 1],
                    "k.",
                    alpha=0.02,
                    ms=1)
            ax.set_yticklabels([str(" ") for f in yticks])
        else:
            ax.plot(resolve["xy"][:, 0],
                    resolve["xy"][:, 1],
                    "k.",
                    alpha=0.02,
                    ms=1)
            ax.set_yticklabels([str(f) for f in yticks])
            ax.set_ylabel("Northing (m)")
        ax.set_xlabel("Easting (m)")
        ax.set_title(title[i])
        ax.axis("equal")
    # plt.tight_layout()

    if saveFig is True:
        fig.savefig("resolve_skytem_data.png", dpi=600)

    # ------------------ Mesh ------------------ #
    # Step1: Set 2D cylindrical mesh
    cs, ncx, ncz, npad = 1.0, 10.0, 10.0, 20
    hx = [(cs, ncx), (cs, npad, 1.3)]
    npad = 12
    temp = np.logspace(np.log10(1.0), np.log10(12.0), 19)
    temp_pad = temp[-1] * 1.3**np.arange(npad)
    hz = np.r_[temp_pad[::-1], temp[::-1], temp, temp_pad]
    mesh = discretize.CylMesh([hx, 1, hz], "00C")
    active = mesh.vectorCCz < 0.0

    # Step2: Set a SurjectVertical1D mapping
    # Note: this sets our inversion model as 1D log conductivity
    # below subsurface

    active = mesh.vectorCCz < 0.0
    actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap
    sig_half = 1e-1
    sig_air = 1e-8
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half

    # Initial and reference model
    m0 = np.log(sigma[active])

    # ------------------ RESOLVE Forward Simulation ------------------ #
    # Step3: Invert Resolve data

    # Bird height from the surface
    b_height_resolve = resolve["src_elevation"].value
    src_height_resolve = b_height_resolve[rxind_resolve]

    # Set Rx (In-phase and Quadrature)
    rxOffset = 7.86
    bzr = FDEM.Rx.PointMagneticFluxDensitySecondary(
        np.array([[rxOffset, 0.0, src_height_resolve]]),
        orientation="z",
        component="real",
    )

    bzi = FDEM.Rx.PointMagneticFluxDensity(
        np.array([[rxOffset, 0.0, src_height_resolve]]),
        orientation="z",
        component="imag",
    )

    # Set Source (In-phase and Quadrature)
    frequency_cp = resolve["frequency_cp"].value
    freqs = frequency_cp.copy()
    srcLoc = np.array([0.0, 0.0, src_height_resolve])
    srcList = [
        FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z")
        for freq in freqs
    ]

    # Set FDEM survey (In-phase and Quadrature)
    survey = FDEM.Survey(srcList)
    prb = FDEM.Simulation3DMagneticFluxDensity(mesh,
                                               sigmaMap=mapping,
                                               Solver=Solver)
    prb.survey = survey

    # ------------------ RESOLVE Inversion ------------------ #

    # Primary field
    bp = -mu_0 / (4 * np.pi * rxOffset**3)

    # Observed data
    cpi_inds = [0, 2, 6, 8, 10]
    cpq_inds = [1, 3, 7, 9, 11]
    dobs_re = (np.c_[resolve["data"][rxind_resolve, :][cpi_inds],
                     resolve["data"][rxind_resolve, :][cpq_inds], ].flatten() *
               bp * 1e-6)

    # Uncertainty
    relative = np.repeat(np.r_[np.ones(3) * 0.1, np.ones(2) * 0.15], 2)
    floor = 20 * abs(bp) * 1e-6
    std = abs(dobs_re) * relative + floor

    # Data Misfit
    data_resolve = data.Data(dobs=dobs_re,
                             survey=survey,
                             standard_deviation=std)
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data_resolve)

    # Regularization
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Simple(regMesh, mapping=maps.IdentityMap(regMesh))

    # Optimization
    opt = optimization.InexactGaussNewton(maxIter=5)

    # statement of the inverse problem
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion directives and parameters
    target = directives.TargetMisfit()  # stop when we hit target misfit
    invProb.beta = 2.0
    inv = inversion.BaseInversion(invProb, directiveList=[target])
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.0
    reg.mref = m0.copy()
    opt.LSshorten = 0.5
    opt.remember("xc")
    # run the inversion
    mopt_re = inv.run(m0)
    dpred_re = invProb.dpred

    # ------------------ SkyTEM Forward Simulation ------------------ #
    # Step4: Invert SkyTEM data

    # Bird height from the surface
    b_height_skytem = skytem["src_elevation"].value
    src_height = b_height_skytem[rxind_skytem]
    srcLoc = np.array([0.0, 0.0, src_height])

    # Radius of the source loop
    area = skytem["area"].value
    radius = np.sqrt(area / np.pi)
    rxLoc = np.array([[radius, 0.0, src_height]])

    # Parameters for current waveform
    t0 = skytem["t0"].value
    times = skytem["times"].value
    waveform_skytem = skytem["waveform"].value
    offTime = t0
    times_off = times - t0

    # Note: we are Using theoretical VTEM waveform,
    # but effectively fits SkyTEM waveform
    peakTime = 1.0000000e-02
    a = 3.0

    dbdt_z = TDEM.Rx.PointMagneticFluxTimeDerivative(
        locations=rxLoc, times=times_off[:-3] + offTime,
        orientation="z")  # vertical db_dt

    rxList = [dbdt_z]  # list of receivers
    srcList = [
        TDEM.Src.CircularLoop(
            rxList,
            loc=srcLoc,
            radius=radius,
            orientation="z",
            waveform=TDEM.Src.VTEMWaveform(offTime=offTime,
                                           peakTime=peakTime,
                                           a=3.0),
        )
    ]
    # solve the problem at these times
    timeSteps = [
        (peakTime / 5, 5),
        ((offTime - peakTime) / 5, 5),
        (1e-5, 5),
        (5e-5, 5),
        (1e-4, 10),
        (5e-4, 15),
    ]
    prob = TDEM.Simulation3DElectricField(mesh,
                                          time_steps=timeSteps,
                                          sigmaMap=mapping,
                                          Solver=Solver)
    survey = TDEM.Survey(srcList)
    prob.survey = survey

    src = srcList[0]
    rx = src.receiver_list[0]
    wave = []
    for time in prob.times:
        wave.append(src.waveform.eval(time))
    wave = np.hstack(wave)
    out = prob.dpred(m0)

    # plot the waveform
    fig = plt.figure(figsize=(5, 3))
    times_off = times - t0
    plt.plot(waveform_skytem[:, 0], waveform_skytem[:, 1], "k.")
    plt.plot(prob.times, wave, "k-", lw=2)
    plt.legend(("SkyTEM waveform", "Waveform (fit)"), fontsize=10)
    for t in rx.times:
        plt.plot(np.ones(2) * t, np.r_[-0.03, 0.03], "k-")
    plt.ylim(-0.1, 1.1)
    plt.grid(True)
    plt.xlabel("Time (s)")
    plt.ylabel("Normalized current")

    if saveFig:
        fig.savefig("skytem_waveform", dpi=200)

    # Observed data
    dobs_sky = skytem["data"][rxind_skytem, :-3] * area

    # ------------------ SkyTEM Inversion ------------------ #
    # Uncertainty
    relative = 0.12
    floor = 7.5e-12
    std = abs(dobs_sky) * relative + floor

    # Data Misfit
    data_sky = data.Data(dobs=-dobs_sky, survey=survey, standard_deviation=std)
    dmisfit = data_misfit.L2DataMisfit(simulation=prob, data=data_sky)

    # Regularization
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Simple(regMesh, mapping=maps.IdentityMap(regMesh))

    # Optimization
    opt = optimization.InexactGaussNewton(maxIter=5)

    # statement of the inverse problem
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Directives and Inversion Parameters
    target = directives.TargetMisfit()
    invProb.beta = 20.0
    inv = inversion.BaseInversion(invProb, directiveList=[target])
    reg.alpha_s = 1e-1
    reg.alpha_x = 1.0
    opt.LSshorten = 0.5
    opt.remember("xc")
    reg.mref = mopt_re  # Use RESOLVE model as a reference model

    # run the inversion
    mopt_sky = inv.run(m0)
    dpred_sky = invProb.dpred

    # Plot the figure from the paper
    plt.figure(figsize=(12, 8))

    fs = 13  # fontsize
    matplotlib.rcParams["font.size"] = fs

    ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
    ax1 = plt.subplot2grid((2, 2), (0, 1))
    ax2 = plt.subplot2grid((2, 2), (1, 1))

    # Recovered Models
    sigma_re = np.repeat(np.exp(mopt_re), 2, axis=0)
    sigma_sky = np.repeat(np.exp(mopt_sky), 2, axis=0)
    z = np.repeat(mesh.vectorCCz[active][1:], 2, axis=0)
    z = np.r_[mesh.vectorCCz[active][0], z, mesh.vectorCCz[active][-1]]

    ax0.semilogx(sigma_re, z, "k", lw=2, label="RESOLVE")
    ax0.semilogx(sigma_sky, z, "b", lw=2, label="SkyTEM")
    ax0.set_ylim(-50, 0)
    # ax0.set_xlim(5e-4, 1e2)
    ax0.grid(True)
    ax0.set_ylabel("Depth (m)")
    ax0.set_xlabel("Conducivity (S/m)")
    ax0.legend(loc=3)
    ax0.set_title("(a) Recovered Models")

    # RESOLVE Data
    ax1.loglog(frequency_cp,
               dobs_re.reshape((5, 2))[:, 0] / bp * 1e6,
               "k-",
               label="Obs (real)")
    ax1.loglog(
        frequency_cp,
        dobs_re.reshape((5, 2))[:, 1] / bp * 1e6,
        "k--",
        label="Obs (imag)",
    )
    ax1.loglog(
        frequency_cp,
        dpred_re.reshape((5, 2))[:, 0] / bp * 1e6,
        "k+",
        ms=10,
        markeredgewidth=2.0,
        label="Pred (real)",
    )
    ax1.loglog(
        frequency_cp,
        dpred_re.reshape((5, 2))[:, 1] / bp * 1e6,
        "ko",
        ms=6,
        markeredgecolor="k",
        markeredgewidth=0.5,
        label="Pred (imag)",
    )
    ax1.set_title("(b) RESOLVE")
    ax1.set_xlabel("Frequency (Hz)")
    ax1.set_ylabel("Bz (ppm)")
    ax1.grid(True)
    ax1.legend(loc=3, fontsize=11)

    # SkyTEM data
    ax2.loglog(times_off[3:] * 1e6, dobs_sky / area, "b-", label="Obs")
    ax2.loglog(
        times_off[3:] * 1e6,
        -dpred_sky / area,
        "bo",
        ms=4,
        markeredgecolor="k",
        markeredgewidth=0.5,
        label="Pred",
    )
    ax2.set_xlim(times_off.min() * 1e6 * 1.2, times_off.max() * 1e6 * 1.1)

    ax2.set_xlabel("Time ($\mu s$)")
    ax2.set_ylabel("dBz / dt (V/A-m$^4$)")
    ax2.set_title("(c) SkyTEM High-moment")
    ax2.grid(True)
    ax2.legend(loc=3)

    a3 = plt.axes([0.86, 0.33, 0.1, 0.09], facecolor=[0.8, 0.8, 0.8, 0.6])
    a3.plot(prob.times * 1e6, wave, "k-")
    a3.plot(rx.times * 1e6,
            np.zeros_like(rx.times),
            "k|",
            markeredgewidth=1,
            markersize=12)
    a3.set_xlim([prob.times.min() * 1e6 * 0.75, prob.times.max() * 1e6 * 1.1])
    a3.set_title("(d) Waveform", fontsize=11)
    a3.set_xticks([prob.times.min() * 1e6, t0 * 1e6, prob.times.max() * 1e6])
    a3.set_yticks([])
    # a3.set_xticklabels(['0', '2e4'])
    a3.set_xticklabels(["-1e4", "0", "1e4"])

    plt.tight_layout()

    if saveFig:
        plt.savefig("booky1D_time_freq.png", dpi=600)

    if plotIt:
        plt.show()

    resolve.close()
    skytem.close()
    if cleanup:
        print(os.path.split(directory)[:-1])
        os.remove(
            os.path.sep.join(directory.split()[:-1] +
                             ["._bookpurnong_inversion"]))
        os.remove(downloads)
        shutil.rmtree(directory)
Exemple #29
0
    lower=lowerbound,
    upper=upperbound,
    maxIterLS=20,
    maxIterCG=100,
    tolCG=1e-4,
)
# create inverse problem
invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
inv = inversion.BaseInversion(
    invProb,
    # directives: evaluate alphas (and data misfits scales) before beta
    directiveList=[
        Alphas,
        scaling_init,
        beta,
        update_smallness,
        targets,
        scale_schedule,
        betaIt,
        MrefInSmooth,
        update_Jacobi,
    ],
)
# Invert
pgi_model_no_info = inv.run(m0)

# Plot the result with full petrophysical information
density_model_no_info = gravmap * pgi_model_no_info
magsus_model_no_info = magmap * pgi_model_no_info
learned_gmm = reg.objfcts[0].gmm
quasi_geology_model_no_info = actvMap * reg.objfcts[0].membership(
Exemple #30
0
    def test_basic_inversion(self):
        """
        Test to see if inversion recovers model
        """

        h = [(2, 30)]
        meshObj = discretize.TensorMesh((h, h, [(2, 10)]), x0="CCN")

        mod = 0.00025 * np.ones(meshObj.nC)
        mod[(meshObj.gridCC[:, 0] > -4.0)
            & (meshObj.gridCC[:, 1] > -4.0)
            & (meshObj.gridCC[:, 0] < 4.0)
            & (meshObj.gridCC[:, 1] < 4.0)] = 0.001

        times = np.logspace(-4, -2, 5)
        waveObj = vrm.waveforms.SquarePulse(delt=0.02)

        x, y = np.meshgrid(np.linspace(-17, 17, 16), np.linspace(-17, 17, 16))
        x, y, z = mkvc(x), mkvc(y), 0.5 * np.ones(np.size(x))
        receiver_list = [
            vrm.Rx.Point(np.c_[x, y, z],
                         times=times,
                         fieldType="dbdt",
                         orientation="z")
        ]

        txNodes = np.array([
            [-20, -20, 0.001],
            [20, -20, 0.001],
            [20, 20, 0.001],
            [-20, 20, 0.01],
            [-20, -20, 0.001],
        ])
        txList = [vrm.Src.LineCurrent(receiver_list, txNodes, 1.0, waveObj)]

        Survey = vrm.Survey(txList)
        Survey.t_active = np.zeros(Survey.nD, dtype=bool)
        Survey.set_active_interval(-1e6, 1e6)
        Problem = vrm.Simulation3DLinear(meshObj,
                                         survey=Survey,
                                         refinement_factor=2)
        dobs = Problem.make_synthetic_data(mod)
        Survey.noise_floor = 1e-11

        dmis = data_misfit.L2DataMisfit(data=dobs, simulation=Problem)
        W = mkvc((np.sum(np.array(Problem.A)**2, axis=0)))**0.25
        reg = regularization.Simple(meshObj,
                                    alpha_s=0.01,
                                    alpha_x=1.0,
                                    alpha_y=1.0,
                                    alpha_z=1.0,
                                    cell_weights=W)
        opt = optimization.ProjectedGNCG(maxIter=20,
                                         lower=0.0,
                                         upper=1e-2,
                                         maxIterLS=20,
                                         tolCG=1e-4)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
        directives = [
            BetaSchedule(coolingFactor=2, coolingRate=1),
            TargetMisfit()
        ]
        inv = inversion.BaseInversion(invProb, directiveList=directives)

        m0 = 1e-6 * np.ones(len(mod))
        mrec = inv.run(m0)

        dmis_final = np.sum(
            (dmis.W.diagonal() * (mkvc(dobs) - Problem.fields(mrec)))**2)
        mod_err_2 = np.sqrt(np.sum((mrec - mod)**2)) / np.size(mod)
        mod_err_inf = np.max(np.abs(mrec - mod))

        self.assertTrue(dmis_final < Survey.nD and mod_err_2 < 5e-6
                        and mod_err_inf < np.max(mod))